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APOLLO SPACECRAFT FLIGHT HISTORy

Mission report

Mission number S_acecraft Descri ti_ Launch date Launch site

PA-I Fostlaunch BP-6 First pad abort Nov. 7, 1963 White Sands

memorandum Missile Range,
N. Mex.

A-001 MSC-A-R-64-1 BP-12 Transonic abort May 13, 1964 White Sands

Missile Range,
N. Max.

AS-10I _C-A-R-6h-2 BP-13 Nomin_l launch and May 28, 196h Cape Kennedy, _ /
exit environment Fla.

AS-102 MZC-A-R-64-3 BP-15 Nominal launch and Sept. 18, 1964 Cape Kennedy,

exit environment Fla.

A-O02 _C-A-R-65-1 BP-23 Maximum dynamic Dec. 8, 196h White Sands

pressure abort Missile Range,
N. Max.

AS-103 _R-SAT-FE-66-4 BP-16 Micrometeoroid Feb. 16, 1965 Cape Kennedy,
(MSFC) experiment Fla.

A-003 MSC-A-R-65-2 BP-22 Low-altitude abort _Tay 19, 1965 White Sands

(planned high- Missile Ea_ge,
altitude abort) N. Max.

AS-104 Not published BP-26 Micrometeoroid May 25, 1965 Cape Kennedy,

experiment and Fla.
service module

reaction control

system launch
environment

PA-2 M_3C-A-R-65-3 BP-23A Second pad abort June 29, 1965 White Sands

Missile Range,
N. Max.

AS-105 Not published BP-gA Mierometeoroid July 30, 1965 Cape Kennedy,
experiment 8/]d Fla.

service module

reaction control

system launch
envi ronment

MSC-A-R-66-3 SC-002 Power-on tb_nbling Jan. 20, 1966 White Sands
A-O04

boundary abort Missile Range,

N. Max.

As-Eel MSC-A-R-66-4 SC-009 Supereircttlar Feb. 26, 1966 Cape Kennedy, _"

entry with high Fla.
heat rate

AS-202 MSC-A-R-66-5 SC-011 Supereircular Aug. 25, 1966 Cape Kennedy, ,
ent_ with high Fla.
heat load
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i.0 SUMMARY

The Apollo 16 space vehicle was launched from the Kennedy Space Cen-

ter (Launch Complex 39A) at 12:54:00 p.m.e.s.t. (17:54:00 G.m.t.) on

April 16, 1972. The crew for this mission were Captain John W. Young,

Commander; Lt. Commander Thomas K. Mattingly II, Command Module Pilot ;

and Lt. Colonel Charles M. Duke, Jr., Lunar Module Pilot.

The spacecraft/S-IVB combination was inserted into an earth parking

orbit for spacecraft systems checkout and preparation for translunar in-

jection. Following the translunar injection maneuver, the command and
service modules were separated from the S-IVB for lunar module docking

and ejection. 0ne midcourse correction was required during the trans-

lunar phase to achieve the desired lunar orbit insertion maneuver condi-
tions. The S-IVB impact point was not accurate because a leak in the

auxiliary propulsion system produced an unpredictable thrust and also

prevented the final targeting maneuver from being performed.

During translunar coast, a significant command and service module

systems problem was encountered in that an indication of inertial meas-

urement unit gimbal lock was received by the spacecraft computer when no

gimbal lock condition existed. Subsequently, a software program was used

to inhibit the computer from responding to such indications during crit-

ical operations. Activities during translunar coast included a cislunar

navigation exereise, ultraviolet photography of the earth and moon, a

fluid electrophoresis demonstration, and investigation of the visual light

flash phenomenon that has been experienced on previous flights. The docked

spacecraft were inserted into a lunar orbit of 170 by 58 miles following

a service propulsion firing of 374.9 seconds.

Preparations for lunar descent proceeded on schedule; however, while

activating the lunar module systems, the S-band steerable antenna was not

movable in the yaw plane. As a result, the two omnidirectional antennas

were used for most of the remaining lunar operations. The powered descent

to the lunar surface was delayed approximately 5 3/4 hours because of os-

cillations detected in a secondary yaw gimbal actuator on the service pro-

pulsion system engine during systems checks for the circularization maneu-
ver. A command-and-service-module-active rendezvous was performed to place

the vehicles in close proximity while the problem was being evaluated.

Tests and analyses showed that the redundant system was still usable and

safe, had it been required. Therefore, the vehicles were separated agair
and the mission continued on a revised timeline.

The lunar :module was landed approximately 276 meters northwest of the

planned landing site at about 104 1/2 hours. About i00 seconds of hover
time remained at touchdown. The landing coordinates were 8 degrees 59 min-

utes 29 seconds south latitude and 15 degrees 30 minutes 52 seconds east
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longitude based on the Lunar Topographic Photomap of Descartes, First
Edition, January 1972.

The first extravehicular activity was initiated at ll9 hours after

an 8-hour rest period. Television coverage of surface activity was de-

layed until the lunar roving vehicle systems were activated because the
steerable antenna on the lunar module could not be used. The lunar sur-

face experiments packages were deployed, but accidental breakage of the

electronics cable rendered the heat flow experiment inoperable. After
completing their activities at the experiments site, the crew drove the

lunar roving vehicle west to Flag Crater where they performed the planned

tasks. The inbound traverse route was Just slightly south of the outbound

route, and the next stop was Spook Crater. The crew then returned, via

the experiment station, to the lunar module at which time they deployed
the solar wind composition experiment. The duration of the extravehicu-

lar activity was approximately 7 hours ll minutes and the distance trav-

eled by the lunar roving vehiclewas approximately 4.2 kilometers.

The second extravehicular traverse was south-southeast to a mare

sampling area near the Cinco Craters on Stone Mountain. The crew then

drove in a northwesterly direction, making stops near Stubby and Wreck

Craters. The last leg of the traverse was north to the experiments sta-
tion and the lunar module. The duration of the second extravehicular ac-

tivity was approximately .7 hours 23 minutes and the distance traveled by
the lunar roving vehicle was ll.1 kilometers.

Four stations were deleted from the third extravehicular traverse

because of time limitations. The first stop was North Ray Crater and

"House Rock", on the rim of North Ray Crater, was sampled. The crew then
drove southeast to "Shadow Rock". The return route to the lunar module

nearly retraced the outbound route. The duration of the third extrave-

hicular activity was approximately 5hours 40 minutes and the distance
traveled by the lunar roving vehicle was ll.4 kilometers.

The lunar surface activities lasted 20 h0urrs and 14 minutes and about
95 kilograms of samples were collected. The total distance traveled in

the lunar roving vehicle was 26.7 kilometers. The crew remained on the

lunar surface approximately 71 hours.

While the lunar module crew was on the surface, the Command Module

Pilot was obtaining photographs, measuring physical properties of the moon

and deep space, and making visual observations. Essentially the same com-

pliment of instruments was used to gather data as was used on the Apollo

15 mission; however, different areas of the lunar surface were flown over,

and more comprehensive deep space measurements were made, providing scien-

tific data that can be used to validate findings from Apollo 15 as well

as add to the total store of knowledge of the moon and its atmosphere,

the solar system, and galactic space.
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Lunar ascent was initiated at 175 1/2 hours and was followed by a
normal rendezvous and docking. Attitude control of the lunar module was

lost at Jettison; consequently, a deorbit maneuver was not possible. The

estimated orbital life of the lunar module is about 1 year.

The particles and fields subsatellite was launched into lunar orbit

and normal systems operation was noted. However, the spacecraft orbital
shaping maneuver was not performed prior to ejection and the subsatellite

was placed in a non-optimum orbit that resulted in a much shorter life-

time than the planned year. Loss of all subsatellite tracking and telem-
etry data on the 425th revolution (May 29, 1972) indicated that the sub-

satellite had impacted the lunar surface.

The mass spectrometer deployment boom stalled during a retract cycle
and was, therefore, Jettisoned prior to transearth injection. The second

plane change maneuver and some orbital science photography were deleted
so that transearth injection could be performed about 24 hours earlier

than originally planned.

Activities during the transearth coast phase of the mission included

photography for a Skylab contamination study, and completion of the vis-

ual light flash phenomenon investigation which had been partially accomp-
lished during translunar coast. A 1-hour and 23-minute transearth extra-

vehicular activity was conducted by the Command Module Pilot to retrieve

the film cassettes from the scientific instrument module cameras, visu-

ally inspect the equipment, and expose a microbial response experiment
to the space environment. Two midcourse corrections were made on the re-

turn flight to achieve the desired entry interface conditions.

Entry and landing were normal. The command module was viewed on

television while on the drogue parachutes and continuous coverage was

provided through crew recovery. The spacecraft landed at 0 degrees 42
minutes 0 seconds south latitude and 156 degrees 12 minutes 48 seconds

west longitude, as determined by the onboard computer. Total time for

the Apollo 16 mission was 265 hours, 51 minutes, and 5 seconds.
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2.0 INTRODUCTION

The Apollo 16 mission was the second in the science-oriented J series

of missions, and the vehicle configuration and science payload were simi-

lar to those of Apollo 15. The differences are described in Appendix A.

A major objective of the mission was to investigate the lunar surface in

the Descartes highlands area because it was considered to be representa-
tive of much of tlhe moon's surface, and an area of this type had not been

previously visited. A detailed assessment of the degree to which this

and other mission objectives were accomplished is given in section 12.0.

This report primarily provides information on the operational and

engineering aspects of the mission. Preliminary scientific results and

launch vehicle performance are reported in references i and 2, respec-

tively. A complete analysis of all applicable data is not possible with-
in the time frame of the preparation of this report. Therefore, report

supplements will be published as necessary. Appendix E lists the reports

and gives their status, either published or in preparation.

Customary units of measurement are used in those sections of the re-

port pertaining to spacecraft systems and trajectories. The International

System of Units (IS) is used in sections pertaining to science activities.

Unless otherwise specified, time is expressed as elapsed time from range

zero (established as the integral second before lift-off), and does not

reflect the two time updates shown in table 3-I. Mileage is given in nau-

tical miles and weight is referenced to earth gravity.
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3.0 TRAJECTORY

The trajectory profile of this mission was similar to that of Apollo

15. The major differences, aside from the trajectory differences neces-
sary to reach another landing site, were the elimination of the command

and service module orbit-shaping maneuver and a plane change maneuver, and

the inability to deorbit the lunar module ascent stage. The sequence and
definition of ew_nts for the Apollo 16 mission are shown in tables 3-1

and 3-11. Tables 3-111 and 3-1V contain the listing and definition of

trajectory parameters, and table 3-V contains a summary of the maneuvers.

3,,1 LAUNCH AND TRANSLUNAR TRAJECTORIES

The launch trajectory is given in reference 3. The translunar injec-
tion was normal _d ejection of the command and service module/lunar mod-

ule from the S-IVB stage after the translunar injection firing were normal.
One translunar midcourse correction was required.

3.2 S-IVB STAGE

The S-IVB stage evasive maneuver and first lunar impact maneuver were

performed. However, as a result of an auxiliary propulsion system leakage
problem, the second lunar impact maneuver was cancelled. Therefore, the

impact point of the S-IVB on the lunar surface was inaccurate. Further,
tracking was lost at about 29 hours and this prevented an accurate deter-

mination of the impact point and time. Two determinations of the impact

point have been made - one on the basis of tracking data and the other

from lunar surface seismic data. The point determined from the seismic

data was 1.3 degrees north latitude and 23.8 degrees west longitude; where-

as, the point determined from tracking data was 2.1 degrees north latitude

and 22.1 degrees west longitude. The final impact point will be published

by the Marshall Space Flight Center after review of existing data.

3.3 LUNAR ORBIT

3.3.1 Orbital Phase

The lunar orbit insertion maneuver placed the spacecraft into an or-

bit having a 170-mile apocynthion and a 58-mile pericynthion. Four hours

later, a descent orbit insertion maneuver was performed which lowered the

/
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TABLE 3-1.- SEQUENCE OF EVENTS

Events a Elapsed time
Hr:min:sec

Lift-off (Range zero = 17:54:00 G.m.t., April 16, 1972) 00:00:00.6
Earth orbit insertion 00:11:56

Translunar injection maneuver 02:33:37

S-IVB/command and service module separation 03:04:59

Translunar docking 03:21:53
Spacecraft ejection 03:59:15

First midcourse correction 30:39:01
Scientific instrument module door jettison 69:59:01

Lunar orbit insertion 74:28:28

S-IVB lunar impact 75:08:04
Descent orbit insertion 78:33:45

Lunar module undocking and separation 96:14:00
Circularization maneuver 103:21:43
Powered descent initiation ,_I04:17:25 _

Lunar landing ,104:29:35

Mission Control Center time update (+00:11:48) 118:06:31

Start first extravehicular activity q's _i18:53:38 i_%
Apollo lunar surface experiment package first data 121:44:00 _

End first extravehicular activity _126:04:40 _
Start second extravehicular activity -142:39:35

End second extravehicular activity _150:02:44
Start third extravehicular activity -165:31:28

Plane change 169:05:52
End third extravehicular activity _171:ii:31
Lunar ascent 175:31:48

Vernier adjustment maneuver 175:42:18

Terminal phase initiation 176:26:05
Terminal phase finalization 177:08:42

Docking 177:41:18
Lunar module jettison 195:00:12

Separation maneuver 195:03:13

Mass spectrometer experiment and boom jettison 195:23:12
Subsatellite launch 196:02:09

Transearth injection 200:21:33

Mission Control Center time update (+24:46:00) 202:18:12
Second midcourse correction 214:35:03

Start transearth extravehicular activity 218:39:46

End transearth extravehicular activity 220:03:28
Third midcourse correction 262:37:21

Command module/service module separation 265:22:33

Entry interface (400 000 feet) 265:37:31
Begin blackout 265:37:47
End blackout 265:41:01

Forward heat shield jettison 265:45:25

Drogue deployment 265:45:26
Main parachute deployment 265:46:16

Landing 265:51:05

asee Table 3-11 for identification of events shown in this table.
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TABLE 3-11.- DEFINITION 0F EVENTS

Event Definition

Range zero Final integral second before lift-off

Lift-off Time of instr_mentation unit umbilical disconnect

as indicated by launch vehicle telemetry

Earth orbit insertion S-IVB engine cutoff time plus i0 seconds as indi-

indicated by launch vehicle telemetry

Trslqslunar injection m_aeuver Start tank discharge valve opening, allowing fuel

to be pumped to the S-IVB engine

S-IVB/co_nand module separation, translunar The time of the event based on analysis of space-

docking, spacecraft ejection, scientific in- craft rate and aceelerometer data

strlmlent module door jettison, lunar module

undocking and separation, docking, lunar mod-

ule jettison, and subsatellite launch

First midcourse correction, lunar orbit inser- The time the spacecraft computer comms/ided the

tion, descent orbit insertion, circ_larization engine on as indicated in the computer word tele-

maneuver, powered descent initiation, plane merry data

chsnge, lunar ascent, _ad transearth injection

Second and third midco_se corrections Engine ignition as indicated by the appropriate

engine bilevel telemetry measurement or other

telemetry data

S-IVB lunar impact The time determined from Apollo lunar surface

experiment package seismic data.

Lthnar landing The time of first contact of lunar module foot-

pads with the lunar surface as derived from

spacecraft rate data

Beginning of extravehicl/lar activity The time cabin pressure reaches 3 psia during

depressurization as indicated by telemetry data

End of extravehicular ac.-tivity The time cabin pressure reaches 3 psia during

repressurization as indicated by telemetry data

Apollo lunar surface e_0eriment package first The receipt of first data considered valid from

data the Apollo lunar surface experiments package

telemetry

Terminal phase initiation The time of start of the terminal phase initiation

maneuver during the rendezvous sequence as cal-

culated by the computer

Terminal phase finalization The time during the rendezvous sequence when the

first breaking maneuver is performed as calculated

by the computer

Com_snd module/service laodule separation The time of separation by command module�service

module separation relays via the telemetry system

Entry interface The time the cold,and module reaches h00 000 feet

geodetic altitude as indicated by the best esti-

mate of trajectory

Begin blackout The time of S-band co_tulieation loss due to air

ionization during entry

End blackout The time of aquisition of S-band communications

following blackout

Forward heat shield Jettison, drogue deploy- The time of deployment as indicated by the rels_v

ment, and main parachute deployment actuations via the telemetry system

Earth landing The time the spacecraft was visually observed to
touch the water

Time update The Mission Control Center time was updated twice

during the mission to conform to the time in the

onboard flight plan.

NOTE: These time updates are not reflected in

this report.



TABLE 3-111.- TRAJECTORY PARAMETERSa

I l I oe:o,osE 0e-fl,e08p oe-f**edSp*oe-fi*edReference Time Latitude Longitude Altitude f_/gee

velocity flight-path heading angle,
Event Body hr:mln:sec deg:mLn n. ml. angle_ dee dee E of N

Translunar ph_e

Trau_lunar inJectlon Earth 02:39:26 11:595 16E:E9 g 171.0 35 565.7 7.47 59.5

Command and service module/lunar Earth 03:59:15 32t38 N 111:13 M 12 492,7 16 533.5 61.07 88.39
module ejection from 8-1VR

First mideourse correction

Z_Ition Earth 80:39:01 28:18 M 106:29 W ll9 843.8 4 514,8 76.86 111.56
Cutoff E_th 30:89:08 25:13 N 106:30 W 119 345.3 4 508.1 76.72 lll.50

Scientific inshr_nt module Moon 69:59:01 02:45 S 54:56 W ii 135,4 3 896.5 -79,85 -82.39
door jettison

Lth_arorbit phase

L_nar orbit insertion

I_itlon Moon 74:28:28 08:09 N 166:38 W 93.9 8 105.4 -9.51 -_9.95
Cutoff Moon 74:84:43 07:07 N 169:19 E 75.3 5 399.2 2.22 -95.5

!Descen_ O_:it inse_tlon

I_ition Moon 78:33:45 08:35 N 186_01 E 58.5 5 486.3 -0,40 -87.16
Cutoff Moon 78:34:09 08:37 N 137:16 W 58.4 5 281.9 0.i0 -87.31

Co_mLnd Lnd service module/lunar Moon 96:13:31 02:22 N 121:55 E 33.8 5 417.2 -i.43 -98.88
module separation

Command and service module
¢Ire_lgrlzatlon

I_mltlon Moon 103:21:43 08:53 N 181:59 W 59.2 8 277.8 -0.06 -87.75
Cutoff Moon 103:21:48 08:84 M 151:57 W 59,1 5 348,7 0._E -87.75

Powered descent initiation Moon i04:17:E5 08t40 S 32:44 E iO,5 5 548.8 -0.07 -93,04

C_and and service module

plane change
I_i_ion Moon 169t08:52 05:36 N 108:30 E 58,6 5 349.8 0,26 -97.57
Cutoff Moon 169:08:89 03:34 N E108:30 88.6 5 349.9 0.28 -98.93

%

Ascent insertion Moon 175:38:56 09:46 8 05:26 E 9.9 5 523.3 0.34 -93.88

_Vernier adjustment Moon 175:42:18 10_20 2 05158 M 11.2 5 515.2 0,59 -91.89

Te_inal phase initiation Moon 176:26:05 06_53 N 147:E2 W 40.2 5 351.6 -O.O0 -82.07

Docking Moon 177:41:18 10:82 S 35:39 W 65,6 5 813,7 -0.04 -90,33

Lunar module _ettison Moon 198:00:ig 01:08 N 70:28 E 59.2 5 347.9 0,39 -iO0.50

8uhsatelllte launch Moon 196:02:09 O0:Ol 8 115:59 W 58.4 5 349.4 -0.41 -79.43

Trem_ear_h injection 200_21:33 09:43 N 175:16 E
Ignition Moon , 52.2 5 383.6 -0.18 -85.80

Cutoff MoOn 200:24:15 10t88 M 164:21 E 59.7 8 663.0 5.12 -82.37

Tr_nslunar coast

Second midcourse correction

Ignitlon Earth 214:35:03 03:46 8 74:32 E 183 668.0 3 806.8 -78.08 165.08

Cutoff Earth 214:35:25 03:46 0 74:30 E 183 664,8 3 807.9 -80.35 164.99

Thlrdmldcollrse correction

X_ition Earth 262:37:21 29:38 S 82:11 E 25 312.9 12,256.5 -69.02 157.11

Cutoff Earth 262:37:27 29:38 S 82:10 E 25 305.2 12 258.3 -69.02 157.10

Entry and l_ndln_ _hanes
I I

Entry interface Earth I 265:37:31 19:52 S 162:08 W 65.8 36 196.1 I -6.55 21.08

Landing Earth I 265;51;05 00:42 0 156;18_ .... ]

ages Table 3-IV for trajectory parameter definitions.
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TABLE 3-1V.- DEFINITION OF TRAJECTORY AND ORBITAL PARAMETERS

Tra_ector_ parameters Definition

Geodetic latitude The spherical coordinate measured along a meridian on

the earth from the equator to the point directly be-
neath the spacecraft, deg:min

Selenographic latitude The definition is the same as that of the geodetic lati-
tude except that the reference body is the moon rather
than the earth, deg:min

Longitude The spherical coordinate, as measured in the equatorial
plane, between the plane of the reference body's prime
meridian and the plane of the spacecraft meridian, deg

Altitude The distance measured between the spacecraft and the ref-
erence radius of the earth along a llne from the center of
the earth to the spacecraft. When the reference body is
the moon, it is the distance measured from the spacecraft
along the local vertical to the surface of a sphere having
a radius equal to the distance from the center of the moon
to the landing Site, ft or miles

Space-fixed velocity Magnitude of the inertial velocity vector referenced to

the body-centered, inertial reference coordinate system,
ftlsec

Space-fixed flight-path angle Flight-path angle measured positive upward from the body-
centered local horizontal plane to the inertial velocity
vector, deg

Space-fixed heading angle Angle of the projection of the inertial velocity vector
onto the body-centered local horizontal plane, measured
positive eastward from north, des

Apogee The point of maximum orbital altitude of the spacecraft
above the center of the earth, miles

Perigee The point of minimum orbital altitude of the spacecraft
above the center of the e_th, miles

Apocynthion The point of maximum orbital altitude above the moon as
measured from the radius of the lunar landing site, miles

Pericynthion The point of minimum orbital altitude above the moon as
measured from the radius of the lunar landing site, miles

Period Time required for spacecraft to complete 360 degrees of
orbit rotation, min

Inclination The true angle between the spacecraft orbit plane and
the reference body's equatorial plane, deg

Longitude of the ascending node The longitude at which the orbit plane crosses the ref-
erence body's equatorial _Lane going from the Southern
to the Northern Hemisphere, deg
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T_3-V.LMANEUVERSUMMARY

(a) 'fTauslunar

Maneuver System Ignition time, Firing time, VelocitYchange, Resultant perilune conditions
hr:_n:sec sec ftlsec Altitude, Velocity, Latitude, Longitude, Azrival time¸

miles ft/sec dog :rain dog :rain hr:min:sec

Translunar i,Jection S-IVB 2:33:37 341.9 i0 389.6 lh6.y 7941.I 7:48 N 178:06 E 74:32:22

First mldco_se correc- Service propulsion 30:39:01 2.0 12.5 71.7 8180.0 7:47 _ 176:47 E 74:32:07
tion

(b) Lunar orbit

Resultant orbit
Velocity

M_euver System Ignition time, Firing time, ch_ge,
hr:min :see see ft/sec Apoc_,thion, Pericynthion,

miles miles

L_ orbi_ insertion SerVice propulsion 74:28:28 374,9 2802.0 170.3 58.1

l)esoentorbit inse_ion Ser_ice prop%L]sion 78:33:45 24.4 209°5 58.5 10.9

Circularization Service propulsion 103:21:43 4.7 81.6 68.0 53.1

Powered descent initiation Descent proptLlsion 104:17:25 734.0 6703.0 .....

L_*_ orbit pl_e eh_ge Ser%_icep_op_sion 169:05:52 7.i 124.0 64.6 55.0

Ascent Ascent propulsion 175:31:48 427.7 6054.2 40.2 7-9

•_er_in8.1pkase _itlabion Ascent l-_rop_sion 176:26:05 2.5 78.0 64.2 40.1

(c) Transe_th

Velocity Resultant entry interface condition
Event System I@mltion time, Firing tim_, change,

}_:mdn:sec sec ft/sec Flight-path Velocity, Latitude, Longitude, Arriv_l time.
angle, dog ft/sec dog :rain dog :min hr ;min:sec

Transe_th injection Service propulsion 200:21:33 162.3 3370.9 -7.44 36 196.9 21:30 $ 16P:43 W 265:36:52

Second midcourse Re_tion coatrol 21_:35:03 8.0 3.4 -6.5 36 196.h 19:48 S 162:05 W 265:47:34
correction

Third midcourse Re_tion control 262:37:21 3.2 1.4 -6.48 36 196.2 19:44 S 162:06 W 265:47:32
correction

apocynthion to 58 miles and the pericynthion to ii miles. After lunar
module separation and while preparing the command and service module for
the lunar orbit circularization maneuver, a service propulsion system con-

trol problem was detected (section 14.1.10) which caused a 5 3/4-hour de-

lay in the circularization maneuver and the lunar module descent.

3.3.2 Descent

At powered descent initiation, the lunar module was at an altitude

of 66 500 feet and the target w_s 3.56 miles out of the orbital plane.
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A landing site update of 800 feet downrange was entered into the onboard

computer about 2 minutes after powered descent initiation. Landing oc-

curred 12 minutes and l0 seconds after engine ignition at 8 degrees 59

minutes 29 seconds south latitude and 15 degrees 30 minutes 52 seconds

east longitude as shown on the NASA Lunar Topographic Photomap of Des-

cartes, First Edition, January, 1972 (fig. 3-1). This point is 270 me-

ters (886 ft) north and 60 meters (197 ft) west of the prelaunch target

point.

3.3.3 Ascent and Rendezvous

The lunar mod_le ascent stage lifted off fk'om the lunar surface at

175:31:48 and was inserted into a 40-mile by 8-mile lunar orbit about 7

minutes later. Insertion was approximately 33 000 feet further downrange

than desired, and a vernier adjustment maneuver of l0 ft/sec was neces-

sary to change the orbit to the desired conditions. The required ren-

dezvous maneuvers were performed and the lunar module was docked with
the command and service module about 2 hours and lO minutes after lunar

lift-off.

3.3.4 Lunar Module Deorbit Ma_leuver

It was planned to deorbit the lunar module ascent stage to impact the

lunar surface at a predetermined target point. However, immediately after

the lunar module was jettisoned, attitude control of the lunar module was

lost (see see. 14.2.6). As a result, the ascent stage remained in lunar

orbit with an expected orbital lifetime of about one year.

3.3.5 Orbit-Shaping Maneuver and Subs_;ellite Launch

An orbit-shaping maneuver was to have been accomplished in order to

position the command and service module properly for launching the parti-
cles and fields s_satellite into an orbit that would provide a minimum

lifetime of one year. However, because of the service propulsion system

control problem mentioned previously, the maneuver was cancelled. As a

result, the subsatellite was launched into an orbit that provided a life-

time considerably less than planned.
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Figure 3-i.- Lunar module landingsite on photomap of Descartes.
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3.4 TRANSEARTH AND ENTRY TRAJECTORY

The transearth injection maneuver was performed after 64 revolutions.

Two midcourse corrections were made during transearth flight to achieve
the desired entry interface conditions. The command and service modules

were separated 15 minutes prior to entry interface. Entry was nominal

with the command module landing about 3 miles from the target point. The

landing coordin_;es, determined from the spacecraft computer, were 0 de-

gree 42 minutes 0 seconds south latitude and 156 degrees 12 minutes 48 sec-
onds west longitude.
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4.0 LUNAR SURFACE SCIENCE

The experiments which comprised the Apollo lunar surface experiments

package for this mission consisted of a passive seismometer, an active

seismometer, a lunar surface magnetometer, and a heat flow experiment.

Other lunar surface experiments consisted of a portable magnetometer ex-

periment, a far ultraviolet camera/spectroscope experiment, a cosmic ray

detector experiment, a solar wind composition experiment, geological in-

vestigation, and a soil mechanics experiment. Descriptions of the experi-

ment equipment or references to other documents in which descriptions may

be found are contained in appendix A. A comprehensive discussion of the

preliminary scientific results of the mission are contained in reference 1.

4.1 SUMMARY OF LUNAR SURFACE ACTIVITIES

The Commauder landed the lunar module on an undulating cratered sur-

face about 270 meters north and 60 meters west of the preplanned target

point. It was landed on the west side of a 5-meter-deep crater and with

the minus-Y footpad adjacent to a 50-centimeter block, one of many blocks

of varying sizes that dot the landscape. Figure 4-1 shows the proximity

of the lunar mo_le to the edge of the crater.

The topogrmphic characteristics of the Descartes highlands landing

site provided the opportunity for exploration and sampling of a kind of

terrain never before visited on the lunar surface. During the approxi-

mately 71 hours on the surface, the crew completed three periods of ex-

travehicular activity. The events of each of the three periods are sum-

marized in table 4-1 and the routes traversed are shown in figure 4-2.

The arrangement of the experiment equipment is shown in figure 4-3. More

detailed descriptions of the lunar surface activities _re given in sections
4.11 and 9.8.

4.2 APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE CENTRAL STATION

The site selected for emplacement of the Apollo lunar surface exper-

iments package was approximately 95 meters southwest of the lunar module.

As shown in figure 4-4, the deployment site is highly cratered and rock
strewn but this was unavoidable because this is the general character of

the terrain. While the Lunar Module Pilot was carrying the experiments
package to the deployment site, subpackage 2 fell off the carry bar. The

subpackage became detached because the latch pin had not locked. Lunar

dirt in the subpackage socket had prevented tlhe flanged end of the carry

q



TABLE 4-I.- LUNAR SURFACE EXTRAVEHICULAR ACTIVITY EVENTS

Elapsed time,
hr:min:sec Event

First Extravehicular Activity

118:53:38 Lunar module cabin depressurized.

119:25:29 Lunar roving vehicle offloaded.

119:32:44 Lunar roving vehicle deployed.

119:54:01 Far ultraviolet camera/spectroscope deployed.
120:05:40 Television activated.

120:21:35 Apollo lunar surface experiments package off-
loaded.

122:55:23 Apollo lunar surface experiments package deployed,

deep core sample gathered, and lunar roving ve-

hicle configured for traverse.

122:58:02 Departed for station 1.

123:23:54 Arrived at station 1. Performed radial sampling,

gathered rake and documented samples, and per-

formed panoramic and stereographic photography.
124:14:32 Departed for station 2.

124:21:10 Arrived at station 2. Performed a lunar portable

magnetometer measurement, gathered samples and

performed panoramic and 500-mm photography.
124:48:07 Departed for Apollo lunar surface experiments

package site (station 3/10).
124:54:14 Arrived at station 3/10. Performed "Grand Prix"

with lunar roving vehicle, retrieved core sam-

ple, and armed the active seismic experiment

mortar package.

125:05:08 Departed for lunar module.

125:05:09 Arrived at lunar module. Deployed solar wind

composition experiment, gathered samples, per-

formed photography, and con_nenced with extra-
vehicular activities closeout.

125:07:00 Solar wind composition experiment deployed.

126:04:40 Lunar module cabin repressurized.

Second Extravehicular Activity

142:39:35 I Lunar module cabin depressurized.

142:49:29 1 Prepared lunar roving vehicle for traverse.143:31:40 Departed for station 4. i
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TABLE 4-1.-- LUNAR SURFACE EXTRAVEHICULAR ACTIVITY EVENTS

Elapsed time, Event
hr:min:sec

144:07:26 Arrived at station 4. Performed penetrometer

measurements, gathered samples, obtained a dou-

ble core tube sample,, gathered a soil trench

sample, and.performed 500-ram and panoramic pho-

tography.

145:05:16 Departed for station 5u

145:10:05 Arrived at station 5. Gathered samples, performed

lunar portable magnetometer measurement, and per-

formed panoramic photography.

145:58:40 Departed for station 6_

146:06:37 Arrived at station 6. Gathered samples and per-

formed panoramic photography.

146:29:18 Departed for station 8 (station 7 deleted).

146:40:19 Arrived at station 8. Gathered samples, obtained

a double core tube sample, and performed pano-

ramic photography.

147:48:15 Departed for station 9.

147:53:12 Arrived at station 9. Gathered samples, obtained

single core tube sample, and performed panoramic

photo graphy.

148:29:45 Departed for station i0.

148:54:16 Arrived at station i0. Gathered samples, performed

penetrometer measurements, obtained a double core

tube sample, and performed panoramic photography.
149 :21:17 Departed for lunar module.

149:23:24 Arrived at lunar module and began extravehicular

activity closeout.

150:02:44 Lunar module cabin repressurized.

Third Extravehicular Activity

165 :31 :28 Lunar module cabin depressurized.

165:43:29 Prepared lunar roving vehicle for traverse.

166:09:13 Departed for station 11.

166:44:50 Arrived at station ii. Gathered samples, per-

formed 500-ram and panoramic photography.

168:09:46 Departed for station 113.

168:17:39 Arrived at station 13. Gathered samples, per-

formed lunar portable magnetometer measurement

and performed panor_nic photography.



TABLE 4-I.- LUNAR SURFACE EXTRAVEHICULJU_ ACTIVITY EVENTS (Concluded)

Elapsed times
hr:min:sec Event

168:46:33 Departed for station i0 prime.

169:15:38 Arrived at station i0 prime. Gathered samples,

obtained a double core tube sample, and per-

formed 500-mm and panoramic photography.

169:01:48 Drove lunar roving vehicle to lunar module.

Gathered samples and con_nenced extravehicular

activity closeout.

170:12:00 Solar wind composition experiment retrieved.

170:23:06 Departed for lunar roving vehicle final parking
area.

170:27:09 Arrived at final parking area. Performed two lu-

nar portable magnetometer measurements, gathered
samples, and continued with extravehicular ac-

tivity closeout.

171:01:42 Retrieved film from far ultraviolet camera/spec-

troscope.

171:11:31 Lunar module cabin repressurized. _

_I
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f

Figure 4-4.- Apollo lunar surface experiments

package central station

bar from sliding all the way into place so that the pin could lock. As

a result, the package was free to rotate and w._rtical oscillations caused
the detachment. The Lunar Module Pilot knocked the dirt out of the socket

and re-attached the package. Dropping of the package caused no operational

degradation.
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Initial data were received in the Mission Control Center at 1938

G.m.t. on April 21 and the received signal strength (-139 +2 dBm) was in

the range of values measured on other packages operating on the moon.
Within 68 minutes of emplacement of the central station, all instruments

were turned on and their operational checkout showed normal performance

except the heat flow experiment which was inoperative because of a broken

cable, as discussed in section 4.6. The radioisotope thermoelectric pow-

er source is providing 70.4 watts, approximately 15 watts higher than the

basic system requirement. The solid-state timer has generated all sched-

uled 18-hour pulses which provide a backup means of initiating certain
functional changes.

The temperature of the central station electronics, as indicated by

sensors on the thermal plate, has varied from a maximum of 42.8 ° C during

lunar day to a minimum of 2.8 ° C during lunar night.

4.3 PASSIVE SEISMIC EXPERIMENT

J

The passive seismic experiment (S-031) was deployed as planned. All

elements of the experiment have functioned normally with the exception of

the thermal control system. Two days after activation, the temperature

increased markedly beyond the controller set point and eventually exceeded

the range of the sensor, 61.4 ° C. The temperature stabilized at night to

52.2 ° C. Photographs of the instrument show the shroud skirt to be raised

at several places (fig. 4-5); further, dust was inadvertently kicked onto

the skirt after the photographs were taken. These factors are believed

to be responsible for the abnormal temperatures. The temperatures are not

expected to affect instrument life or seismic data, but will degrade the
tidal data.

Seismic signals were detected from surface activities by the crew

and movements of the lunar roving vehicle at all points along the trav-

erses (maximum range of 4.4 km). Abrupt changes in the signals detected

from the rover appear to be correlated in some cases with the blockiness
of the terrain being traversed. Other changes remain to be explained.

Seismic signals from the S-IVB impact, which preceded deployment of

the Apollo 16 station, were recorded at all three seismic stations (Apollo
stations 12, 14, and 15) (fig. 4-6). The first detectable signals arrived

at station 12 in approximately 30 seconds, at station 14 in approximately

46 seconds, and at station 15 in approximately 148 seconds. The loss of

normal S-IVB tracking data (see sec. 13.3) prevented accurate determina-
tion of the time and location of the impact. This uncertainty will great-

ly reduce the lunar structural interpretation based upon these data. As
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data from the fot_r stations will expand the knowledge of the lunar struc-

ture much beyond that previously possible.

Three grenades were fired onMay 23 from the active seismic experi-

ment mortar package (see sec. 4.4). The largest and the one having the

longest range tilted the passive seismic experiment sensor 3 arc seconds

southward. This tilt is within the capability of the passive seismic ex-

periment leveling system and the experiment was re-leveled. The two smal-

ler grenades showed no effect.

4.4 ACTIVE SEISMIC EXPERimENT

The active seismic experiment (S-033) mortar package was deployed

about 17 meters northeast of the central station with the geophone line
extending 90 meters northwest of the mortar package (fig. 4-4). The cen-

tral station was commanded to high-bit-rate mode at 19:54:30 G.m.t. on

April 21 to record the active seismic experiment/thumper mode of opera-
tion. Thumping operations began about 7 minutes later at geophone 3 (fur-

thest from the central station) and proceeded at 4.5-meter intervals (ex-

cept between positions ii and 12 and positions 18 and 19 which are 9-meter

intervals) toward geophone i (nearest to the central station). The final

thumper charge was fired about 14 minutes after the first firing. The
central station was commanded to normal bit r_te at 20:16:32 G.m.t. The

thumper was fired at the 19 scheduled cable positions. Two attempts were

needed to fire the thumper at position 2 because the thumper was not armed

for the necessary 5 seconds prior to firing. Seismic signals were recorded

at all three geoplhones for all 19 thumper firings. A calibration pulse

was sent after the last thumper firing verifying that all three geophones
were still operational.

Minor difficulty was experienced in the deployment of the mortar

package pallet when one of the four stakes that support the mortar pack-

age could not be deployed. This anomaly is discussed in section 14.4.2.

The mortar packa@e was leveled and armed to fire four grenades on command

to distances of 150, 300, 900, and 1500 meters. Near the close of the

third extravehicular activity, the mortar package roll angle sensor read-

ing was off scale (see sec. 14.4.3); however, a television panorama taken
near the close of the third extravehicular activity verified that the mor-

tar package was properly positioned and aligned.

The central station was commanded to high bit rate at 0106 G.m.t. on

April 24 to record the impulse produced by the lunar module ascent. A

strong seismic signal was recorded by the geoplhone array. The central

station is scheduled for periodic operation in the high-bit-rate mode for

listening to detect natural seismic signals and to verify experiment op-
erational capability.
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On May 23, the Apollo lunar surface experiment package was commanded
to high bit rate between 0520 and 0644 G.m.t. for the active seismic ex-

periment/mortar mode of operation. Three of the four high-explosive gren-
ades in the mortar package were successfully launched. Grenade 2 (1024

grams) was launched a distance of 900 meters; grenade 4 (695 grams) was
launched a distance of 150 meters; and grenade 3 (775 grams) was launched

a distance of 300 meters; in the sequence given. Grenade 1 (1261 grams
and planned to be launched a distance of 1500 meters) was not launched

because the mortar package pitch angle sensor went off-scale high after

firing grenade 3. (See section 14.4.12 for a discussion of this anomaly.)

The off-scale indication makes the pitch position of the launch assembly
uncertain. Seismic signals were noted by all three geophones for each

grenade launched. The data from the mortar firings combined with the data

from the thumper mode of operation indicates that the regolith has a depth
of about 12 meters in the Descartes area.

4.5 LUNAR SURFACE MAGNETOMETER EXPERIMENT

The lunar surface magnetometer (S-034) was successfully deployed ap-

proximately 15 meters west of the central station (fig. 4-7). The experi-

ment was initially commanded on during the first extravehicular activity.

All operations of the experiment have been normal. A one-time site survey
was successfully completed on April 28. The remanent magnetic field meas-

ured at the lunar surface magnetometer site is 230 ±15 gammas. The in-

strument is also continuously measuring magnetic fields induced in the
lunar interior by changing solar magnetic fields.

4.6 HEAT FLOW EXPERIMENT

Deployment of the heat flow experiment (S-037) was initiated on sched-

ule. The experiment instrument package was moved to the selected site and
the electronics cable was connected to the central station. A hole was

drilled to the depth of the first bore stem section in 51 seconds at an

average penetration rate of 2.3 centimeters per second. The second bore

stem section was added and the hole drilled to the depth of the two sec-

tions in 39 seconds at an average rate of 1.8 centimeters per second. Up-

on adding the final section, the hole was drilled to the planned depth in
54 seconds at a rate of 1.3 centimeters per second. Total penetration was

approximately 250 centimeters. The lunar surface wrench was used success-
fully to restrain the bore stems during power head removal.

Heat flow probe number 1 was inserted into bore hole number 1 to the

full depth and both radiation shields were properly emplaced. While the

Commander was working near the central station, he became entangled in the
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_agnetometer

Figure 4-7.- Ltmar surface magnetometer experiment and
Commander performing active seismic experiment.

heat flow experiment electronics cable and broke it loose at the connector

to the central station. Further deployment was abandoned and the experi-
ment is inoperable. The details of this failure are given in section 14.4.1.
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4.7 LUNAR PORTABLE MAGNETOP_ETER EXPERIMENT

The deployment and operation of the lunar portable magnetometer ex-

periment (S-198) was normal in all respects; leveling, orientation, posit-

ioning, switching, and cable winding operations were accomplished without

difficulty. The instrument was operated at four different sites. Digital

readings relayed over the voice link indicated total magnetic field mag-

nitudes of 180 +15 gammas at station 2, 125 +15 gammas at station 5, 310

-+15 gammas at station 13, and 120 +-15 gammas at the lunar roving vehicle

final parking site. After completion of the first measurement at the fi-
nal site, a lunar rock sample was placed on top of the magnetometer sensor

block, and a second field measurement was made to study the magnetization

of the sample.

4.8 FAR ULTRAVIOLET CAMERA/SPECTROSCOPE EXPERIMENT

The far ultraviolet camera/spectroscope (S-201) was deployed approx-

imately 2 meters southwest of the down-sun footpad of the lunar module
with the camera in the shade and the battery in sunlight (fig. 4-8). Be-

cause of the landing delay and the consequently high sun angle, it was

necessary to move the camera into the shade during the second and third
extravehicular activities. Difficulty was experienced in adjustment of

the azimuth ring. The condition degraded with each adjustment. Section
14.4.9 contains a discussion of this anomaly.

The camera was turned on at the beginning of the first extravehicu-

lar activity and operated until closeout of the third extravehicular ac-

tivity for a span of approximately 51 hours. The film was retrieved for

postflight analysis. The camera was pointed at ii targets by the crew as

planned. No data were recorded for the eleventh target because the cam-
era had run out of film, as expected.

Imagery of the earth in the 1216-angstrom wavelength of hydrogen

(Lyman-alpha) revealed that the geocorona is nearl_ spherical and extends
out more than i0 earth radii (fig. 4-9). Imagery of the earth's atmos-

phere in the 1230- to 1550-angstrom range showed two auroral belts - one
on either side of the magnetic equator and inclined about 15 degrees to

the equator (fig. 4-10). Spectroscopic data without the lithium fluoride

(LiF) transmission optics shows the 584-angstrom line of helium in the

solar wind plasma. The photographs and spectra contain a great deal of

astrophysical detail.
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Figure 4-8.- Far ultraviolet camera/spectroscope experiment,

4.9 COSMIC RAY DETECTOR EXPERIMENT

The panel arrsy of the cosmic ray detector experiment (S-152) was

exposed in its initial configuration upon jettisoning of the spacecraft-

launch vehicle adapter panels. The hidden surface of panel 4 was partly

exposed by the Commander early in the first extravehicular activity (fig.

4-11). The planned area of exposure for detecting particles at the lunar

surface could not be obtained because the experiment mechanism jammed as

described in section 14.4.4. The detector pane] array was retrieved at
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Figure 4-9.- Lyman-alpha imagery of hydrogen

cloud surrounding earth.

the end of the third extravehicular activity, folded in the proper config-

uration for transearth coast data collection, and returned for analysis.

It was difficult to separate the panel assembly from the main frame at

the end of the third extravehicular activity because of thermal expansion
of the Teflon slides.
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The plastic in all panels of the experiment was degraded by heating
above the design limit of 54° C, at which temperature degradation begins.
The high temperature was most likely caused by a film accumulating on the
thermal control surface, in addition to lunar dust. Analysis of the film
has not been completed.

Analysis of the data received on the lunar surface and during trans-
lunar and transearth coast will be degraded because of the minor solar
flare which occurred during translunar flight. This flare blanketed the
detector panels with low energy tracks which interfere with the analysis
of the higher energy tracks received during the previously discussed per-
iods. Also, the resolution will be reduced because of the high tempera-
ture which the experiment hardware experienced on the lunar surface.
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Figure 4-10.- Newly discovered auroral belts.
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Figure 4-11.- Cosmic ray detector experiment,

As a result of the incomplete exposure of panel 4, the portion of the

experiment designed to measure neutron flux was degraded, as were those

designed to measure solar wind gas, and search for radon (Rn222) and argon
(ArgO).

The plastics should be suitable for a study of solar wind particles.

In addition, both solar and galactic cosmic ray tracks have been observed

in the plastics and some of the glasses of the panels. The plastics that

were pre-irradiated with neon (Ne20) showed annealing effects from over-

heating, but neutrons from the fuel cask will be measurable.
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4.1,3 SOLAR WIND COMPOSITION EXPERIMENT

The solar wind composition experiment (S-080) for this mission dif-

fered from those of previous missions in that pieces of platinum foil were

attached to the specially prepared aluminum foil used to entrap noble gas

particles. This was done to determine whether or not the platinum foil

pieces could be cleaned with fluoridic acid to remove lunar-dust contami-

nation without destroying rare gas isotopes of solar wind origin up to the
mass of krypton.

The experiment was deployed about 18 meters northwest of the lunar

module at the end of the first extravehicular activit_ period and re-
trieved near the end of the third extravehicular period. The total foil

exposure time was _5 hours and 5 minutes, some 3 hours longer than that
of any previous mission.

h.ll LUNAR GEOLOGY

h.ll.l Sample Collection

Areas visited and sampled for the lunar geology investigation (S-059)

during the extravehicular activities included the northwest flank of Stone

Mountain (Descartes Mountains), Flag and Spook Craters west of the lunar

module landing site on the Cayley Plains, North Ray Crater, and South Ray

Crater eJecta on the plains between the lunar module and Stone Mountain.

The sampling stations and traverses are shown in figure h-2.

On the first traverse, the tasks at stations 1 and 2 were performed

as planned except for sampling the rim of Spook Crater. A 2.6-meter deep

core sample was obtained at the Apollo lunar surface experiments package
site.

Station 7 was deleted from the second extravehicular activity to al-

low more time for sampling in the lunar module/Apollo lunar surface exper-

iments package area. Double cores were collected at stations h, 8, and i0.

Documented and rake/soil samples were collected at all traverse stops ex-

cept for station 9 which was devoted to obtaining undisturbed surface ma-

terial with the lunar surface samplers, sampling the top and bottom of a

large boulder, and sampling the soil beneath the boulder after it was over-
turned.
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The third extravehicular activity, limited to 5 hours, permitted only

North Ray Crater to be studied. Stops were made at stations ii and 13,

and documented and rake/soil samples were collected. The preplanned sta-

tions 14 (flank of Smoky Mountain), 15, 16, and 17 (Cayley formation and

Palmetto Crater) were deleted. At station 13, a soil sample that had prob-

ably been in permanent shadow was obtained from the base of a large over-

hang on a 2-meter-high boulder (fig. 4-12). Additional sampling at the

lunar module/experiments site included: a second double core (originally

assigned to station 14), two rake/soil samples across a probable ray con-

tact, seven bags of documented rock samples, and three large rocks.

4.11.2 Summary of Geology

Samples were collected that are typical of the Cayley Plains in the

landing area from station i (Flag and Plum Craters) and station 2 (Buster

Crater) as well as some samples from the lunar module/Apollo lunar surface
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experiments packag_ site (station 3/10); South Ray Crater ejecta was col-
lected at stations 4, 8, 9, and station 3/10; North Ray Crater ejecta were
collected at stations ii and 13. Descartes materials were collected from

the flank of Stone Mountain at stations 4, 5, Emd 6.

The Cayley formation appears to consist of light- and dark-colored

breccias, possibly in interstratified layers. It does not consist, at

least in this area, of lava flows, as had been widely supposed. The
Descartes highland materials of Stone Mountain consist of light-colored

breccias and crystalline fragments of, as yet, unknown origin.

No bedrock was sampled by the crew although they tentatively iden-

tified bedrock layers in North Ray Crater and in a large crater high on

Stone Mountain. Elsewhere, all large craters were heavily mantled with

deep regolith that completely masks any possible strata. Boulders of

varying sizes were sampled by the crew, the largest being the 20-meter

"House Rock" on the rim of North Ray Crater (fig. 4-13).

About 95 kilograms of documented rock and soil samples were obtained.

The material collected from widely distributed sampling stations, includ-

ing samples of ejecta from deep craters, should provide for the study of

the Cayley Plains region down to depths of 200 meters.

4.11.3 Equipment

The equipment used during the geology portion of the extravehicular

activities perforated well with the following exceptions:

a. One of the retractable tethers (yo-yo's) would not fully retract.

Postflight inspection showed that the tether was operating, but that the

friction increased during the retraction cycle (see sec. 14.3.7).

b. The vertical staff of the gnomon was ]pulled off at station 6.

When the gnomon was being unstowed, the leg assembly stayed in the bag

and the vertical staff came out by itself (see sec. 14.4.5).

c. The Velcro hook patch which provides the attachment point for a

Velcro wrapping strap on each of the two padded sample bags came off be-
fore use (see sec. 14.4.10).

d. The reseau plate on the Lunar Module Pilot's 70-ram electric data

camera was smeared during a magazine change between extravehicular activ-
ities 2 and 3.

e. Sample return container i did not ses_1 properly because part of

a sample collection bag was caught in the seal area between the knife edge
and the indium seal.
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f. The sample collection bags fell off the portable life support
system mounts (see sec. 14.4.8).

g. The documented sample bag dispensers repeatedly fell off the
attachment brackets on the 70-ram camera (see sec. 14.4.6).

h. The screws came loose on one of the documented sample bag dis-
penser assemblies (see sec. 14.4.7).

i. The lanyard loop came off the penetrometer stowage release pin
(see sec. 14.4.11).

4.11.4 Photography

A total of 1774 photographs were taken on the lunar surface with the

70-mm electric data cameras using the 60-mm and 500-ram focal-length lenses,
and 4 1/2 magazines of 16-mm lunar surface data acquisition camera film

were exposed. At least one 360-degree 60-ram panorama was taken at each

station. The first successful use of a polarimetric filter on the lunar

surface was an 80-meter stereobase polarimetric panorama of the interior
of North Ray Crater.

4.12 SOIL MECHANICS EXPERIMENT

The soil mechanics experiment (S-200) provided a greater amount of

qualitative data on the properties of the lunar surface and subsurface

soils than has been previously obtained. All parts of the soil mechanics

experiment were completed with the exception of the soil_mechanics trench
at station i0 which was omitted because of time limitations.

Preliminary analysis has indicated that the self-recording penetrom-

eter performed normally with a loss of data for only one of eleven tests.

Four cone penetration tests were accomplished at station 4. Five cone

penetration tests were performed between the experiments station and the

lunar module. Of these, four were on a line between the deep drill core

site and the station i0 double-core tube site. Cone penetration depths

range between 20 and 75 centimeters. Additionally, two plate-load tests
were performed at station i0.

Preliminary analysis of the self-recording penetrometer data has in-

dicated that the soil density and strength characteristics are highly var-

iable, both laterally and vertically. Definite evidence of layering is

visible in some of the load-versus-penetration tracks indicated on the

penetrometer.
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5.0 INFLIGHT SCIENCE AND PHOTOGRAPHY

This section contains a discussion of experiments and science-ori-

ented detailed objectives which were performed in lunar orbit, and dur-

ing translunar and transearth flight. Preliminary scientific findings
are not given in detail in the discussion since this information will be

included in reference i, which is in preparation. The experiment equip-

ment was similar to that of the Apollo 15 mission. Appendix A provides

information on minor changes from the Apollo 15 configuration.

Experiments located in the scientific instrument module consisted of

a gamma_ray spectrometer, an X-ray spectrometer, an alpha-particle spec-

trometer, a mass spectrometer, and a subs atellite which was the vehicle

for three experiments that were to obtain data on particles and fields.

The scientific instrument module equipment also included a mapping camera,

a panoramic camera, and a laser altimeter.

The other e_?eriments and detailed objectives performed during flight,

and which required active crew participation, consisted of: an S-band

transponder experiment; a down-link bistatic radar experiment; ultravio-

let photography of the earth and moon; photography of the Gegenschein,

other astronomical subjects, and the lunar surface; visual observations

from lunar orbit; an experiment to determine _Lcrobial response to the

space environment; investigation of the visual light flash phenomenon;

and a demonstration of fluid electrophoresis in space. Experiments that

did not require active crew participation consisted of measurement of

meteoroid impacts on the spacecraft windows, a biostack experiment to de-

termine the effects of high-energy heavy ions on biological systems, and
measurement of bome mineral loss in the crew.

5.1 GAMMA-RAY SPECTROMETER EXPERIMENT

Over 80 hours of prime data were obtained in lunar orbit and during

transearth coast from the gamma ray spectrometer experiment (S-160). Some

planned data measurements were not made in lunar orbit because of the early
termination of l_aar orbit operations. However, the large amount of data

reduced and analyzed indicates that all major objectives were accomplished.

The instrument performed satisfactorily throughout the mission. Gain

stability was sigaificantly improved over that of Apollo 15. At initial
turn-on, the spectrometer calibration was the nominal preflight value.

Thereafter, a small downward gain drift occurred, after which the gain

calibration was stable. Energy resolution of the instrument based upon
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measurements of the classical monoenergetic line of 0.511 Mev in the spec-

trum was improved approximately 15 percent over Apollo 15. The extraneous
shield event counts that had been noted in preflight calibration were ex-

perienced during flight. However, the rate stabilized and was not detri-

mental to the data. As a result of the problem with the mapping camera

deployment mechanism, the mapping camera door remained open during the

entire period in which the gamma ray spectrometer was active in lunar or-

bit. This resulted in some loss in sensitivity due to the increased back-

ground radiation contributed by the thorium lens of the mapping camera.

The deployment boom failed to fully retract on three occasions but the
condition had no effect on the data. Details of the boom failure are no-

ted in section 14.1.9.

Maps prepared from over 50 hours of data confirm earlier conclusions

pertaining to the geochemistry of the lunar surface, that the regions of

highest radioactivity are the western maria - Oceanus Procellarum and Mare

Imbrlum. Data obtained during transearth coast indicate that the space-

craft background radiation and the total cosmic gamma-ray spectrum are in
essential agreement with Apollo 15 results. Preliminary analysis of data

collected from a scan of the supergalactic equator along four planes indi-

cates that galactic gamma rays exhibit anisotroplc properties.

5.2 X-RAY FLUORESCENCE EXPERIMENT

Over 60 hours of prime data were obtained with the X-ray fluorescence

experiment (S-161) and nearly 12 hours were spent with the spectrometer

pointed at two celestial X-ray sources, Scorpius X-1 and Cygnus X-1. The

flight plan changes had an effect upon the schedule for ground-based astro-

nomical observatlons; however, some coverage was obtained. The following

table gives the times of the observations and indicates the coverage by the

ground-based observatories.

Duration of Ground-based

Observation Object Starting time, G.m.t., observation, observatory

April 1972, day:hr:min hr:min Coverage

1 Sco X-1 25:03:25 00:40 -

2 Cyg X-1 25:22:55 03:00

3 Sco X-1 26:02:15 02:30 aAlgonquin

4 Sco X-1 26:20:15 03:20 bLeyden,

Cwise

5 Cyg X-1 27:02:45 02:55 -
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aAlgonquin Radio Observatory, Canada

bLeyden (optical) Observatory, South Africa

Cwise (optical) Observatory, Israel

The overall performance of the instrument was satisfactory. Nominal

operation of the four detectors was evidenced by calibration data from the
built-in sources. A high count rate in channel 1 of detector 1 was ob-

served, but a simiilar high count was observed during the Apollo 15 mls-
sion. Detectors 2 and 3 incorporate filters to enhance the detection of

X-rays from alumin1_n and magnesium sources, but detector 1 is unfiltered.

Detector h is part of the solar monitor and does not view the lunar sur-

face. The orienta,_ion required to view Cygnus X-1 subjected the spectrom-
eter to an undesirable cold soak and necessitated a special maneuver to

alleviate the condition. The maneuver caused the loss of X-ray pointing
and may result in some loss of data. The X-ray detectors survived the
cold soak condition quite well.

The region of overlap between the Apollo 15 and Apollo 16 coverage

shows excellent agreement. The Descartes region shows the high aluminum

and low magnesium content that is characteristic of the highlands on the

far side. The mare areas to the west of Descartes show a substantial de-
crease in the ratio of aluminum to silicon.

Data monitored in real time indicate that Scorpius X-l, the bright-

est object in the X-ray sky, may have been rather active during one of
the viewing sessions.

5.B ALPHA-PARTICLE SPECTROMETER

Approximately 70 hours of prime data were collected in lunar orbit

with the alpha-particle spectrometer experiment (S-162). Deletion of the

second lunar orbit plane change prevented an observation of the highly
interesting Alphonsus area.

The spectrometer operated satisfactorily during all scheduled orbi-

tal and transearth observations. All ten detectors performed within the

expected energy resolution. There were no periods of noisy operation as

experienced on Apollo 15. The alpha-particle spectrometer was subjected

to the same cold soaks as the X-ray spectrometer and lowered temperatures
an undetermined amount below the red-line limit. No detrimental effects

on detector perfo_lance resulted.

From a preliminary analysis of real-time data, a localized concentra-

tion of polonium (Po210) in the general vicinity' of Mare Fecunditatus was

detected. This is shown in the calculation of polonium count rate versus
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lunar latitude. It appears that the increase of polonium is statistically

significant.

Deep-space observations to determine non-radon-related background re-

vealed significant solar alpha particle activity. The deep-space counting

rates exceeded the lunar rates by a factor of 2 or 3, indicating that a

solar alpha-particle background will have to be considered in the analy-
sis of the data.

5.4 MASS SPECTROMETER EXPERIMENT

The mass spectrometer experiment (S-165) instrument operate d very well

in lunar orbit collecting approximately 84 hours of data, three-fourths of

this being in the minus-X direction of flight of the command and service

module, the prime data mode, wherein the gas entrance scoop points in the
ram direction and scoops up native lunar gases. The remainder was back-

ground data taken primarily in the plus-X direction.

Telemetry data about 15 hours prior to lunar module undocking indi-

cated that the plus 12-volt power supply voltage had dropped from ii.9

to 9.4 volts, although the instrument operated nominally. After several
oscillations between these values, the voltage stabilized at 12 volts for

the remainder of the flight. Postflight analysis showed that the 12-volt

sensor had a slow rise time and was sampled before reaching its full value.

The power supply itself did not malfunction.

As on Apollo 15, the boom would not fully retract. On the initial

occurrence, the boom retracted to within 12 inches of full retraction,

sufficient for a safe service propulsion system firing. The number of
boom retractions was minimized following this problem. During the final

retraction for the transearth injection maneuver, the boom stalled at ap-

proximately 2/3 of full extension necessitating jettisoning of the boom
and instrument. The transearth coast data were to have been used to sup-

plement analysis of the lunar orbit data. However, Apollo 15 data can
be used for this purpose.

The Apollo 16 data resembles that of Apollo 15 on the distribution

of gasses in the lunar atmosphere. Preliminary analysis indicates that

lunar atmospheric neon is lower than predicted.

5.5 PARTICLES AND FIELDS SUBSATELLITE EXPERIMENTS

The subsatellite was launched on the dark side of the moon about one

hour after lunar module jettison during the 62nd revolution (April 2_,
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21:56:09 G.m.t.). An orbit-shaping maneuver was to have been performed

prior to launching of the subsatellite to obtain the desired lifetime of

one year. However, the maneuver was not performed because of the decis-

ion to limit the use of the service propulsion system to the transearth

injection maneuver as a result of the engine gimbal actuator control prob-

lem (discussed in section 6.6). Consequently, the planned orbit was not

obtained. The initial orbital parameters, as compared to the Apollo 15

parameters, were as follows :

Mission Perilune _ km (ml) Apolune _ _n (mi) Inclination

Apollo 15 i105 (55) 144 (76) -28 °

Apollo 16 97 (52) 120 (66) -Ii °

It was not possible to activate the subsatellite for about 20 hours

after launch because of communications frequency interference resulting

from the failure of the lunar module ascent stage to deorbit. At the time

of launch, the subsatellite _as in the magnetosheath heading toward the

magnetopause and geomagnetic tail. The delay in activation had no detri-
mental effect on tlhe subsatellite systems.

The subsatellite is calculated to have impacted the far side of the

moon (ii0 degrees east longitude) during revolution 425 on May 29, 1972.

The last telemetry data were received at 2031 G.m.t., coinciding with

loss of signal. The signal should have been reacquired at 2200 G.m.t.,
but was not.

The physical cause for the short orbital life appears to be the lu-
nar mass concentrations on the front and far sides located relatively near

the subsatellite ground track.

5.5.1 Particle Shadows/Boundary Layer

All charged-particle telescopes and electrostatic analyzer detectors

operated normally during the lifetime of the particle shadows/boundary

layer experiment (S-173) portion of the subsatellite. On two passes,
usable data were c_tained in the geomagnetic tail of the magnetosphere.

Particle tracing was improved by a better shadow structure than on

Apollo 15. This resulted from the telescopes operating at a lower tem-

perature.

5.5.2 Magnetometer

The biaxial fluxgate magnetometer experiment (S-174) performed satis-

factorily. Meastu'ement_ are in agreement with Apollo 15 results that the
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lunar magnetic field is more varied on the far side than the near side.

However, individual features overflown during the first geomagnetic tall

pass are not as clearly defined as those measured on Apollo 15. While in

the solar wind, the magnetometer mapped the diamagnetic cavity, examined

limb compressions over the terminator, and measured lunar induction fields

produced by transients in the interplanetary field. While the size of the

magnetic enhancement in the diamagnetic cavity (approximately 1/2 gamma)

is similar to that seen on Explorer 35, the limb compression exterior to

this cavity is significantly stronger at the low subsatellite altitudes
(up to 6 gammas).

5.5.3 S-band Transponder

The subsatellite S-band transponder experiment (S-164) system func-

tioned satisfactorily. Better-than-planned coverage was obtained from
May 8 through May 16 when the altitude of the subs atellite was between

ii and 20 kilometers. Several orbits just prior to impact are expected

to reveal new gravity data, but since the impact was on the far side, much

of the extremely low-altitude portion of the trajectory occurred during

occultation. Therefore, only that portion of the trajectory near the

eastern limb will supply new information. A good gravity profile is ex-
pected over Copernicus.

5.6 S-BAND TRANSPONDER EXPERIMENT (CSM/LM)

The S-band transponder experiment (S-164) systems on the command and

service module and the lunar module performed satisfactorily. Gravita-

tional profile data were obtained while the docked spacecraft were in el-
liptical orbit and while the command and service module was in circular

orbit (except for revolutions 12 through 16 when firing of thrusters dur-

ing stationkeeping degraded the data). No S-band doppler measurements

from the lunar module ascent stage after undocking were obtained because

of the inability to control its attitude. Data reduced in real-time were

of excellent quality and definite gravity variations were observed. Grav-

ity anomalies in the Ptolemaeus, Descartes, Fecunditatus, and Procellarum
regions were identified.

5.7 DOWN-LINK BISTATIC RADAR OBSERVATIONS OF THE MOON

Dual S-band/VHF observations were conducted for the down-link bistatic

radar observations of the moon experiment (S-170) during revolution 40.

Strong direct and reflected S-band signals were received by the Jet Pro-

pulsion Laboratory 210-foot dish antenna, and weak VHF reflected signals



_ 5-7

were received by the 150-foot dish antenna at Stanford University. Inter-

ference was experienced with the VHF signals during one-seventh of the

pass from the Apollo test and training satellite (TETR-D satellite 5492

launched September 29, 1971, for testing of NASA tracking stations and

training of ground network personnel) transmitter operating on the same
frequency. The transmitter could not be comm_ded off prior to the

Apollo 16 mission because of a satellite systems failure.

The VHF-only test was initiated on revolution 42. The other omni-

directional antenna was used to improve signal strength, but this was not
successful because of poor antenna orientation and the transmitter was

switched back to the original antenna and good signals were received.

Data obtained during revolutions 42, 43, and 44 were clear of the inter-
ference from the training satellite. The reason for the weak reflections
is unknown.

The S-band data appear to be of high quality and most of the scien-

tific goals dependent upon dual S-band and VI_' data can be met even though
the VHF data on revolution 40 were of poor qu_Llity. The VHF data taken on

revolutions 42 szld 43 have enough similarity that it may be substituted.

5.8 S_VICE MODULE ORBITAL PHOTOGRAPHY

5.8.1 Panoramic Camera

The panoramic camera was carried on Apollo 16 to obtain high-resolu-

tion photography of the lunar surface. The priority of the coverage was
the Apollo 16 landing site area both prior to and after .the extravehicu-

lar activities, _reas near the terminators, sz_d other areas of the ground

track. The coverage during lunar orbit operations is shown in figure 5-1.
In addition to that shown in the figure, some coverage was obtained after
trans earth injection.

Concurrent with camera activation for revolution 3 photography, an
abnormal bus voltage condition was noted. Consequently, the camera was

turned off after exposing only four frames, thereby resulting in the loss

of coverage between 170 degrees west and 168 degrees east longitude. An-

alysis showed that the under-voltage condition was caused by the space-

craft configurat'Lon, and that camera operation was normal. Rescheduling
of subsequent panoramic camera passes recovered a portion of this loss as

well as other losses incurred as a consequence of the delay in the circu-

larization maneuver, cancellation of the plane change maneuver, and the
one-day-early return to earth.
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From the beginning of camera operation, the exposure sensor consis-

tently read lower light levels than were present (sec. 14.5.4). Post-

flight analysis of data shows that frames taken over approximately 25 de-

grees away from the terminator were over-exposed by 1 to 2 f-stops. A

development process using a lower gamma compensated for the overexposure

in the subsolar area without compromising the resolution of the near-

terminator photographs. A section of film, taken after transearth in-

jection, was cut from the roll and processed separately to test the change

in the chemical processing. Examination of the main roll after develop-

ment showed excellent quality photographs. Revolution 47 telemetry data
indicated several unusual transients in the lens motor current. This con-

dition persisted for several successive frames. A review of the film dis-

closed no corresponding degradation in the photography.

A photograph of the Descartes area obtained with the panoramic camera

on revolution 28 (fig. 5-1) was used in the preparation of figure 4-2.
The lunar module can be identified in the photograph.

5.8.2 Mapping Camera System

The mapping camera provided cartographic-quality photographs from
which selenodetic data were derived for use in mapping at a scale of

1:250 000. Complete mapping camera coverage was obtained of all areas

overflown by the spacecraft in daylight. Simultaneous vertical operation

of the mapping camera was performed with the panoramic camera to provide

geometric support for photographic reduction. The mapping camera was also

operated vertically during revolutions 4, 29, 46, 59, 60, and after trans-

earth injection.

Oblique photography was taken 25 degrees forward of the spacecraft

on the 25th revolution, 40 degrees south of the lunar ground track on the
26th and 48th revolutions, and 40 degrees north of the lunar ground track

on the 27th and 37th revolutions. Approximately 90 percent of the planned

coverage was obtained. Figure 5-2 shows the daylight coverage obtained

during lunar orbit. The obtained coverage is less than 5 percent of the

lunar surface and about 80 percent of the Coverage is new, i.e., not pho-

tographed during Apollo 15. The coverage lost because of flight plan

changes was along the northeast and southwest edges of the ground track,

and 8 degrees of longitude at the western daylight limit. This coverage

loss is discussed in the panoramic camera section (5.8.1).

The mapping camera system consists of a mapping (metric) camera and
a stellar camera; the function of the stellar camera is to obtain synchro-

nized star field photographs for each frame of metric photography while
on the illuminated side of the moon and for each laser altimeter firing

on the dark side of the moon. Measurements and computations from these

photographs provide an independent determination of attitude. Satisfac-

tory stellar photography was obtained on all mapping camera passes, and
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camera operation was normal; however, during the transearth extravehicu-
lar activity, the glare shield for the stellar camera was found jan_ned

against the handrail paralleling the scientific instrument module bay.

This anomaly is discussed further in section 14.5.2.

The mapping camera deployment mechanism exhibited anomalous perform-

ance similar to the Apollo 15 problem. The first extension was normal,

but the retract time was excessive by a factor of two. (This anomaly is

discussed further in section 14.5.1.) In order to reduce the possibility

of total failure of the mechanism, the camera remained in the extended

position after the second extension (on revolution 17) until retraction

(on revolution 48) for the plane change maneuver. The remaining nine

planned deployment cycles were reduced to three - two during lunar orbit,

and one between transearth injection and the transearth extravehicular

activity. As a result, the mapping camera and laser altimeter were left

extended for long periods of time. This presented no apparent problems
for these instruments.

Upon opening the cassettes for film development, the film was found

to be contaminated with metal chips (see sec. ].4.5.7). A scheme was de-

vised using air jets and tacky rollers to clean both the mapping and
stellar film before processing. Examination of the developed film shows

the image quality of the mapping photography to be excellent. Nine or

more frames, however, are overexposed (see sec. 14.5.6). In most cases,
this condition occurred when the shutter speed changed from 1250 to 800

rpm.

It is conceivable that some of the metal (;hips found in the cassette

may have been between the emulsion and the reseau plate at the focal plane.

This would not seriously degrade the image quality, but may introduce geo-

metric distortions which will adversely affect the measurements on some

frames. The photography will satisfy all basic; requirements.

5.8.3 Laser Altimeter

The functions of the laser altimeter are to provide a distance meas-

ure from the spacecraft to the lunar surface in synchronism with each map-

ping camera expos_ire, and to provide topographic profiles for correlation

with gravity anomalies obtained from tracking data.

Altimeter data were obtained on all mapping camera passes on the il-

luminated side of the moon. Initial operation was normal but the percent-

age of valid measurements gradually decreased as the mission progressed

because the laser output power decreased. This anomaly is discussed in

section 14.5.3. About 65 percent of the observations were valid through

revolution 60, but on the last pass (revolution 63), only i0 percent of
the measurements were valid. (See section 14.5.5 for a discussion of
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this anomaly. ) The loss of altitude data on the illuminated side of the

moon will have little effect on the interpretation of mapping photography

since there is redundancy in determining altitude. However, some inter-

polation will be required in correlating topographic profiles with gravity
anomalies.

Altimeter data on the dark side was not affected as severely because

less laser output power is required when ranging against non-illuminated

surfaces. Approximately 82 percent of these data was good.

5.9 COMMAND MODULE ORBITAL PHOTOGRAPHY

5.9.1 Astronomical Photography

Astronomical light sources ranging from the relatively bright solar

corona to extremely faint galactic regions were photographed with the

16-ram data acquisition camera (T-1 18-ram lens), the 35-mm camera (f/1.2,

55-ran lens), the 70-ram camera (f/2.8, 80-ram lens), and hlgh-speed film with

an American Standards Association speed rating of 2485.

Solar corona photography.- The objective of the photographic obser-

vations included two lunar sunrise sequences and two lunar sunset se-

quences, but revisions to the flight plan caused by the early return to

earth would not permit the sunset sequences. Two sequences of the east-
ern half (sunrise) of the solar corona were obtained, each of which re-

quired seven exposures starting 75 seconds prior to sunrise and ending

l0 seconds prior to sunrise. Exposures of i0, 4, i, 1/2, 1/3, 1/30 and

1/60 seconds were made on high-speed recording film using the 70-mm cam-

era with 80-_ lens set at f/2.8. However, the 1-second and 1/2-sec-

ond exposures were not obtained because of a procedural error. The trig-

ger was released too quickly for the 1-second exposure, so the shutter

remained open, and the film was transported for the next exposure. Pro-
per actuation of the trigger for the 1/2-second exposure returned the

camera to normal status. The result of the action was an exposure of
less than 1 second and another of more than l0 seconds. Neither were us-

able because the exact durations of the exposures were unknown.

The 16-ran camera was run as a secondary data source. However, the

maximum available exposure time of 1/60-second (1 ft/sec) was not long

enough for the low light levels present, and no images were observed on
the film.

Faint galactic regions .- Two 5-minute exposures to study the outer
regions of galaxies were taken, one each adjacent in time to the Gegen-

schein/Moulton region sequences. These are among the first attempts to
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perform deep-space photography above the earth's airglow. The results
will aid in planning the trade-off's between exposure time and smear for

Apollo 17. The 5-minute exposures do exhibit greater instability than is

ultimately desired. In an effort to reduce the problems associated with

long exposures, an intensive effort will be made during the analysis to

enhance the already high sensitivity of the f/1.2 aperture-Y485 film
system.

Ground-based photography.- Ground-based photography in support of

the inflight photography was planned for Haleakala Observatory, Maul,

Hawaii. Unfavorable cloud conditions prevented photography there. How-

ever, good quality supporting photography was obtained in the MoJave
Desert during the mission and at Mt. Palomar after the mission.

5.9.2 Command Module Lunar Surface Photography

Color photosraph_ with 70-mm camera.- Because of insufficient time,

photographs of two of the planned fifteen targets were not taken using the
70-_z_ camera with the 250-ram lens and color exterior film. Most of the

756 frames obtained are adequate, although over 50 frames show detectable

smear, and a few are excessively underexposed.

Black-and-white photo_raphz with 70-ram camera.- Two of the scheduled
eleven targets for near terminator photography using the 70-ram camera with

the 250-mm lens and the very-high-speed black and white film were deleted

because of insufficient time. However, a few unscheduled targets were ob-

tained which compensates for the loss. A total of 103 frames was exposed

and most are good. Only a few frames are slightly overexposed.

Earthshine plhotography.- Earthshine photography was scheduled on
revolutions 15 and 16 using the 35-mm camera with black-and-white film

(2485). Due to tlhe delay in the lunar module landing, the scheduled earth-

shine photography could not be obtained. The Command Module Pilot did, at

his option, take a few earthshine photographs. These very dark exposures

were taken much farther west and later in the mission. However, two of

the exposures are usable in that features have been identified as being
near the crater Riccioli, which is only about _15 degrees east of the earth-

shine terminator. This is in an area not previously photographed on any

Apollo mission. Surface features were readily distinguished by the eyes
of the Command Module Pilot at the time the photographs were taken. The

shutter speed of 1/8-second was fast for the lighting conditions, but was

chosen as a compromise between lighting and smear.

These results indicate that it may be possible to obtain usable earth-

shine photography on Apollo 17, with more of the earth being illuminated at
the time of the lunar landing.
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5.10 VISUAL OBSERVATIONS FROM LUNAR ORBIT

Visual observations were successfully performed on 9 of the i0 sched-

uled targets _ One target (Goddard area) was deleted because of the flight
plan changes and returning to earth one day early.

The visual observation site graphics were adequate and the 10-power

binoculars were very useful in the investigations of small scale features.
The significant results of the task are the following:

a. A thorough description of the landing site area was obtained

that helped with real-time traverse planning.

b. Formations which appeared as lava flows were observed coming from

a small crater on the western wall of the crater Lobachevsky.

c. The distribution of small lineaments on the lunar surface were
noted.

d. Numerous lava-like marks were detected along highland hills in

Mare Nubium, Mare Cognitum, and Oceanus Procellarum.

5.11 ULTRAVIOLET PHOTOGRAPHY - EARTH AND MOON

The ultraviolet photography - earth and moon experiment (S-177) was

a continuation of an effort begun on Apollo 15 to record the appearance

of the earth and the moon at ultraviolet wavelengths. A 70-ram camera

equipped with a 105-ram ultraviolet transmitting lens was used with lla-0

film to obtain images through the right side window of the command module.

The regular glass panes were replaced with annealed-fused silica to pre-
vent blockage of ultraviolet radiation. Plexiglass and cardboard shields

were provided to protect the crew. A filter wheel containing four filters

permitted the passing of specific ultraviolet bands for photography:

Filter designation Bandpass _ angstrom

UV cutoff 4000

3750 3150 - 3900

3050 2700 - 3300

2650 2550 - 2700

Sixty-six high-quality images were recorded with the three satisfac-

tory filters. (Filter 2650 did not perform satisfactorily.) Two sequen-

ces (16 frames) of translunar coast photography of the lunar crescent were
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blank because of incorrect pointing of the spacecraft. There is no expla-

nation for the loss of photography. Flight plan changes required deletion

of three other sequences - one of lunar maria, and two of the earth seen
from lunar orbit.

A preliminary study of the images has led to the following impres-
sions :

i. The contrast between maria and terrae on the moon is not dramati-

cally reduced in tlhe 2700-3300 angstrom band as predicted.

2. As expected, surface detail of earth imagery is greatly reduced

when taken through the 3050-angstrom filter. Cloud patterns are clear,

but land-sea boundaries are barely discernible near the terrestrial cen-

ter and disappear completely at the limb.

3. Refraction by ice crystals in cirrus clouds seems to be the likely
cause of a flare Observed at the limb of the crescent earth. It is invis-

ible at 3050 angstrom and most apparent for wavelengths greater than 4000

angstrom.

5.12 GEGENSCHEIN FROM LUNAR ORBIT

The photographic observations of the Gegenschein and Moulton regions

from lunar orbit experiment (S-178) were performed satisfactorily using

the 35-ram camera with the aperature set to f/l.2 and the focus set to in-

finity.

The desired l0 exposures - half of them i minute in duration, and the

other half, 3 minutes in duration - were obtained. The pointing was accu-
rate and the quality of photography was good.

The spacecraft stability during the longer exposures was better than

0.3 degree.

Solar radiation caused less degradation of the film than on previous

missions. The data reduction plan requires careful isodensitometry of

all the observational frames including the vignetting data.

5.13 SKYLAB CONTAMINATION STUDY

The tendency of a contamination cloud to collect around a spacecraft

has been of concern to Skylab planners. The objectives of the Skylab
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contamination photography were to determine if a cloud of particles ex-

ist around the spacecraft, to obtain the dynamics of the cloud through

a study of individual particles, and to determine the effects of water

dumps on the background brightness.

All lunar orbit photography and the early transearth coast photo-

graphs were deleted as an indirect result of the problem encountered with

the service propulsion system thrust vector control. The phase function,

the dump, and post-dump photographs were obtained. However, because of

the one-day-early return, all photographs were plagued by scattered moon-

light. It appears that most of the phase function and all the post-dump

photographs are unusable. During the phase function photography, moon-

light was on the window (command module window 4) opening, but not on the

window itself. There was also a considerable amount of light scattered

from the window edge and the opening. There are some restricted areas

on the photographs where data free of scattered light can be obtained.

Photographs of the residual contamination cloud were taken with the

35-ram camera late in transearth coast and resulted in 16 frames. Shortly
afterward, a waste water dump using the auxiliary hatch dump nozzle was

performed. Photographs of conditions during this dump have considerably

fewer tracks than were anticipated from similar studies of Apollo 15.

Photographs of the dump plume show a narrow cone and a varying density dis-

tribution in the cone. The post-dump photograph sequence was shortened by

15 minutes because of thermal considerations resulting from changes in at-

titude. Six frames of 70-mm film were taken through the command module

window 3, and approximately 800 frames of 16-mm photographs of the dump

and post-dump conditions were taken through command module windows 2 and
4.

5.14 APOLLO WINDOW METEOROID EXPERIMENT

This Apollo window meteoroid experiment (S-176) is passive in that

approximately 0.4 square meter of the external surface of the command

module side and hatch windows are used for detecting meteoroids having

a mass of 10-9 grams or less. The windows are made of 99-percent-pure

silica glass and are mounted almost flush with the external surface of
the heat shield contours.

The windows were returned to the Manned Spacecraft Center and are

being scanned at a magnification of 20X (200X magnification for areas of

interest) to map all visible defects. Possible meteoroid craters will be

identified to determine the meteoroid cratering flux on glass surfaces

and to discover possible correlation with lunar rock cratering studies.

Table 5-11 contains a tabulation of meteoroid impacts from previous mis-
sions.
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TABLE 5_I._ METEOROID CRATERS AND RELATED INFORMATION

Window Number of Meteoroid flux 95 percent Minimum

Mission exposure impacts number/m 2 -sec confidence limits meteoroid mass
m2 -sec number/m 2 -sec g

Apollo7 2.21X 105 5 2.26X 10-5 5.29X 10_-5 1.31X 10-l°
(Earth orbital without LM) 7.23 X i0 -

Apollo 8 1.8 X 105 1 1.07 X 10-5 5.96 X i0-5 7.86 X l0-ll
(lunar orbital without LM) 1.07 X l0 w

Apollo 9 1.87 X 105 1 5.36 X 10-6 3.0 X 10-5 5.37 X i0-10
(Earth orbital with LM) 5.36 X 10-7

Apollo i0 1.99 X 105 0 -- 1.86 X 10-5 7.86 X i0-ll
(lunar orbital with LM) --

Apollo 12 2.43 X 105 0 -- 1.52 X 10-5 7.86 X i0-ll
(lunar landing) --

Apollo i3 i.42 X l05 1 1.36 X i0-5 7.6 X i0-56 5.91 X 10-9
circumlunar abort with LM) 1.37 X 10--

Apollo 14 2.35 X 105 2 1.64 X 10-5 5.9 X i0-5_ 1.64 X 10-11
(lunar landing) 1.64 X l0-6

Apollo 15 2.88 X l05 0 -- 1.28 X 10-5 5.37 X i0-I0
(lunar landing)

k_
!

-q
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5.15 VISUAL LIGHT FLASH PHENOMENON

Two light flash observation periods were scheduled during Apollo 16

and these were successfully completed. The first test period began at
about 49 hours and continued for 66 minutes. The Lunar Module Pilot wore

the Apollo light flash moving emulsion detector to provide a direct phys-

ical measurement of the cosmic rays that cause the light flashes. The de-

vice is worn on the head somewhat like a helmet and contains cosmic-ray-

sensitive emulsion plates that surround the eyes. The Commander wore eye

shields during this test period. The Command Module Pilot participated

in the tests as a recorder. He was to have worn the moving emulsion de-

tector, but, for an unknown reason, he was not observing any light flashes.

This is the first crewman since Apollo ll that has not experienced light

flashes. A total of 70 light flash events were reported during the 66-

minute period by the Commander and Lunar Module Pilot. The frequency of

light flashes reported by the Commander averaged one event every 3.6 min-

utes and for the Lunar Module Pilot, one event every 1.3 minutes.

During transearth coast, a test using only eyeshields was initiated
at about 238 hours and was terminated one hour later. For a 32-minute

period of voice reporting, the Commander reported 7 flashes and the Lunar

Module Pilot 15 flashes. The Con_nand Module Pilot participated, but did

not observe any flashes. The average frequency during this period was

one event every 4.5 minutes for the Commander and one every 2.1 minutes

for the Lunar Module Pilot. The number and characteristics of the light

flash events imprinted on the Apollo light moving emulsion detector will

be analyzed and correlated with the visual observations reported by the
two crewmen.

5.16 MICROBIAL RESPONSE IN SPACE ENVIRONMENT

The microbial response in space environment experiment (M-191) was

conducted to quantitatively measure the combined effects of certain space

flight environmental parameters on selected microbial organisms and to

evaluate alterations in mutation rates and adaptive patterns. The effects

of the following space flight parameters were measured:

a. Changes in oxygen partial pressure

b. Changes in barometric pressure from sea level to hard vacuum

c. Changes from l-g environment to extended weightlessness

d. Exposure to a known flux of ultraviolet radiation
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e. Exposure to galactic radiation.

The exposure of the test microbial systems to ultraviolet and cosmic

radiation was accomplished by use of the microbial ecology evaluation de-

vice (appendix A). The device was attached to the end of the television

camera boom near the end of the transearth extravehicular activity. It
was oriented towards the sun and opened for a 10-minute period while the

spacecraft was maintained in the preselected attitude.

The dosimetry film was developed after recovery and showed that the

experiment system functioned properly. Preliminary analysis shows that

good usable data were obtained. The results of the experiment will be

published in a separate report (Appendix E).

5.17 BIOSTACK EXPERIMENT

The biostack experiment (M-211) was conducted to determine the bio-

logical effects of high-atomic-number high-energy heavy ions on selected

biological systems. The information derived from the experiment will be

important in assessing the nature and extent Of radiation hazards to fu-

ture long-duration space missions.

The experiment was unique in that it was the first medical experiment

designed, developed, fabricated, financed, and analyzed by a foreign gov-
ernment (West Germany). No crew participation was required. The hermet-

ically sealed aluminum canister containing biological systems was stowed

in the command module. A description of the experiment apparatus is given
in appendix A.

The biostack canister was returned to the principal investigator where

it was first opened for postflight analysis. The results of the experiment

will be published in a separate report.

5.18 BONE MINERAL MEASUREMENT

The bone mineral measurement experiment (M-078) was again conducted

to determine the degree of bone mineral changes in Apollo crewmen that

result from exposure to weightlessness. This study employs an X-ray tech-

nique that utilizes an iodine isotope monoenergetic beam possessing pre-

dictable photon absorption characteristics to assess bone mineral changes.

No significant loss of bone mineral from the central os calcus (heel)

occurred in any of the crewmen on this mission. However, during the first

3 days after return to earth, there was a progressive decrease in the os
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calcis mineral in the Command Module Pilot. An additional measurement was

taken on this cre_nnan 7 days after return to earth and essentially the

same value was obtained as on the first day following landing. This indi-
cated that the expected reversal of the trend had occurred. The results

obtained were similar to those of Apollo 14, but different from those of

Apollo 15 when the crew experienced bone mineral losses during the flight.
There is no explanation for the variations in bone mineral loss.

5.19 FLUID ELECTROPHORESIS IN SPACE DEMONSTRATION

Electrophoresis was first demonstrated in space on Apollo 14 when

red and blue dyes were separated. Photographs showed that the boundary
dividing the dyes was sharper and better defined than on earth. The

apparatus also contained samples of hemoglobin and DNA which were not

observed to separate. Subsequent examination of the apparatus indicated

that these specimens were destroyed by bacteria, probably during the

long storage time before the demonstration in space actually took place.

As a result of what was learned from Apollo 14, the design and operation

of the apparatus was improved for a second demonstration on the Apollo
16 mission.

The Apollo 16 apparatus demonstrated the electrophoresis of large,
dense non-biologlcal particles in order to evaluate the potential for

separation of biological particles such as living cells. The apparatus

contained three separation columns; one column containing a mixture of
monodispersed polystyrene latex particles of 0.2- and 0.8-micron diameter

and, in the other two columns, particles of each diameter were run sep-

arately to provide comparative data. The demonstration apparatus had the

same dimensions and comparable weight as the Apollo 14 unit, but several

modifications were made to obtain more data. Photographs were taken every

20 seconds during the separation run.

A careful examination of enlarged photographs and color contour den-

sitometer traces shows that the shape of the particle bands and sharpness

of the particle fluid boundary at the band front were extremely stable

during the first electrophoretic run down the columns. An unexplained

particle circulation in a corkscrew pattern was observed in the upper and
middle column (but not the lo_er column) near the end of the run.

Electrophoresis in space was shown to be less subject to the disturb-
ing effects of thermal convection and sedimentation than when conducted

under 1-g conditions. However, the behavior of the polystyrene latex par-

ticles during electrophoresis in space was different than expected in that

more electroosmosis accompanied the electrophoretic migration of particles

than was anticipated; i.e., the electroosmotic interaction increased par-

ticle velocity in the center of flow and retarded particle velocity near
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the wall. Postflight ground tests are being conducted to understand the

relationship of these electrokinetic processes. Although the two sizes

of polystyrene latex in the same tube did not separate, distinct differ-

ences in migrating velocities did occur. A final report will be issued

explaining the observations in detail (Appendix E).

/
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6.0 COMMAND AND SERVICE MODULE PERFORMANCE

This section contains an evaluation of the command and service module

systems performance with emphasis on problems encountered during the mis-
sion. The consumables usage is presented in section 6.11.

6.1 THERMAL, STRUCTURES AND MECHANICAL SYSTEMS

Command and service module temperatures remained within acceptable

limits. Scientific instrument module temperatures were normal for most

of the mission. However, the X-ray spectrometer and alpha-particle spec-

trometer temperatures fell below the minimum established limits during

transearth coast because the spacecraft was held in attitudes such that

the instruments were shaded for prolonged periods.

Command module accelerometer data indicated that the launch-vehicle-

induced oscillations were similar to those measured in previous flights.

The amplitude of these oscillations and the structural loads encountered

during all phases of the mission were within the design limits of the

spacecraft structure.

Separation from the S-IVB was normal and docking transients were

less than 0.5 degree per second in all axes. [low-rate disturbances dur-

ing the rigidizing sequence reflect good alignment (less than 0.5 degree

in all axes) of the spacecraft before the probe retract sequence was in-
itiated. Extraction of the lunar module from the S-IVB was normal.

Rate disturbances experienced during the scientific instrument mod-

ule bay door jettison were less than 0.i degree per second in all axes

and velocity changes to the conmuand and service module were not percept-
ible.

Command module window contamination, similar to that reported on pre-

vious flights, was observed shortly after orbital insertion and remained

throughout the mission. A fine mist condensed on the inner surface of the

exterior (heat shield) panes of the two side windows (i and 5) and the
hatch window (3). The outer surface of the exterior pane on window 3 was

also contaminated. This contamination was described as a residue from a

liquid droplet which produced a streak across the window and an additional
residue which appeared to have resulted from the evaporation of a liquid

droplet. The contamination on the inner surfaces of the heat shield win-
dows is attributed to outgassing of nonmetallic materials in the immediate

window area. On window 5, the contamination appeared to terminate along

a straight line. Remedial action was initiated to reduce the outgassing



problem on all spacecraft following Apollo i0; however, a small amount

of interior contamination was anticipated. The outer surface contamina-

tion was most likely caused by a liquid deposit on the window prior to
boost protective cover jettisoning.

Docking ring latch no. i0 did not preload during translunar docking.
All latches operated properly during undocking and during lunar orbit

docking. From postflight inspection and the inflight description of the
latch, it was concluded that the latch no. i0 was not properly cocked
prior to launch.

Problems similar to those of Apollo 15 were encountered with the re-

traction of the mass spectrometer boom. The boom retracted past the "safe

service propulsion system firing" position on all occasions until prior to

transearth injection when it finally stalled beyond the "safe" position,

and was therefore jettisoned prior to the transearth injection maneuver
(see sec. 14.1.8).

Full retraction of the gsanna-ray spectrometer boom was not attained

on three of five attempts. The mechanism is similar in design to the mass

spectrometer boom. Details of this anomaly are discussed in section 14.1.9.

The earth landing system performance was normal. All three main

parachutes were recovered and postflight inspections were made. Numer-

ous pinhole burns were found in the canopy of one parachute and smaller

numbers of burn holes were found in the other two parachute canopies (see

sec. 14.1.18). Microscopic examination confirmed that the damage was
identical to that produced by reaction control system oxidizer on labora-
tory samples of parachute material and also identical to that shown on

enlarged photographs of a recovered Apollo 14 main parachute which sus-

tained oxidizer burns. Postflight inspection of the recovered parachutes

revealed that the dome nuts were loose on two of the three fabric riser/
steel riser pilot parachute connector links. The cause has been attri-

buted to the use of nuts with nylon inserts which did not provide a posi-

tive locking capability. Future spacecraft will be inspected to insure
that proper nuts are used and thatthe installed nuts are secure.

6.2 ELECTRICAL POWER AND FUEL CELLS

The electrical power system batteries and fuel cells performed satis-
factorily through the mission.

Entry batteries A and B were charged l0 times during flight - battery

A, 4 times and battery B, 6 times. Load sharing and voltage delivery were

satisfactory during each of the service propulsion system firings, during

the service propulsion system troubleshooting procedure, and during entry.
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An apparent deviation from previous missions occurred in the pressure

indication from the entry battery vent manifold. The pressure was induced

by the normal gassing of the batteries, and was relieved by venting the

manifold. The maximum pressure was approximately 14 psia. Manifold pres-

sures had followed the cabin pressure on previous missions. Postflight

testing verified that the Apollo 16 command module had an unusually good
leak-tight manifold system.

An odor (like burned insulation) was noticed during one of the bat-

tery charges. Bench tests previously performed on battery chargers had

shown that a simil_r odor could be produced from the chargers.

The fuel cells were activated 61 hours prior to launch. Following

cryogenic loading (48 hours prior to launch), f_lel cell 2 was placed on

main bus A at 25 to 30 amperes. Three and one-half hours prior to lift-

off, fuel cells 1 _d 3 were placed on main buses A and B, respectively.
Load sharing was as expected throughout the flight, with a nominal spread

of 2 to 7 amperes. The fuel cells supplied 596 killowatt hours of energy

at an average current of 78 amperes and bus voltage of 28.8 volts.

6.3 CRYOGENIC STORAGE

The cryogenic storage system satisfactorily supplied reactants to

the fuel cells and metabolic oxygen to the environmental control system

throughout the mission. Quantities consumed during the mission showed

excellent agreement with preflight predictions.

Hydrogen tank 3 in sector I of the service module experienced a high
initial heat leak of 15 to 20 Btu/hr which gradually diminished to a nor-

mal value of 4 to 6 Btu/hr by 70 hours elapsed time. Analysis indicates

the most likely c_se to be degradation and subsequent recovery of the in-
sulating annulus vacuum (see sec. 14.1.5).

6.4 COMMUNICATIONS

The command _d service module communications equipment functioned

satisfactorily except as discussed in the following paragraphs.

On two occasions, the up-data link would not accept commands. Each

time the problem was cleared by the crew eycli_ the up-telemetry switch

from "normal" to "off" to "normal" which resets the up-data link logic.
A similar problem was experienced on Apollo 9 (see sec. 14.1.6).

f
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At approximately 234 hours, the high-gain antenna would not operate

properly in the reacquisition-narrow-beamwidth mode. Normal performance

was restored after the crew selected the manual mode momentarily and then
returned to the reacquisition mode. This anomaly is discussed in section
14.i.i6.

Intermittent operation of a communications carrier headset earphone
circuit was experienced during transearth coast. The condition was cleared

by flexing the constant wear garment harness near a 21-pin connector (see
see. 14.3.6).

At various times during the mission, the network sites reported that

there was high background noise on the crew voice dumped from the data re-

corder-reproducer. Evaluation revealed that background noise was present,

but was not sufficient to impair the voice intelligibility. The noise was

of three types: (i) normal RF noise, (2) a 400-hertz tone, and (3) a tone

of approximately 3 kilohertz believed to be electromagnetic interference

in the spacecraft. The noise was present during other Apollo missions but

was higher for Apollo 16. Normal bandpass filtering improved the voice
quality.

Video received from all command module telecasts was good. Non-uni-

formity of the lighting in the cabin caused some degradation. Since the

camera's sensitivity adjusts itself to average lighting, the video from

all scenes, especially those rapidly changing, is not optimized in accord-

ance with the capability of the camera. Also, focusing is not optimum
since the lens is set for distances greater than cabin dimensions. On

two occasions, the onboard monitor malfunctioned but had no effect on the

video signal to earth (see sec. 14.3.1).

6.5 INSTRUMENTATION

The instrumentation system satisfactorily supported the mission with

all 501 operational measurements providing usable data. Two measurements

deviated from the expected performance. Readings of 0.2 to 1.5 percent
(on one occasion, 5.0 percent) were experienced on the oxidizer tank 2

quantity measurement when the service propulsion system was not firing.
During such periods, the quantity gage is not electrically energized, and

it should read zero. Erratic readings were also observed prior to launch.

The most probable cause of the unexpected quantity indication was noise

pickup on the transducer electrical wiring.

There was a 15 psia upshift in the service propulsion system oxidizer
tank pressure measurement after the spacecraft reached a vacuum environ-

ment. The bias was constant throughout the mission and data were obtained
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by subtracting 15 psi from the indicated pressure measurement. This anom-
aly is discussed in greater detail in section 14.1.2.

6.6 GUIDANCE, NAVIGATION AND CONTROL

Performance of the guidance, navigation, and the primary and backup

control systems was good throughout the flight with the exception of four

anomalous conditions. No systems capability was lost; however, item b in

the following listing of the four anomalies had a significant impact upon
the subsequent mission operations.

a. The computer issued a gimbal lock warning when no gimbal lock

condition existed. This is discussed in this section and in greater de-
tail in section 14.1.3.

b. An oscillation was detected in the secondary yaw axis servo sys-

tem for the service propulsion engine gimbal during pre-ignition checkout
for the lunar orbit circularization maneuver. This condition is discussed
in this section and in greater detail in section 14.1.10.

c. Uneven drive rates were experienced when positioning the scanning
j telescope shaft axis. This anomaly is discussed in section 14.1.14.

d. Inertial subsystem warnings and inertial coupling data unit fail

indications were received on six occasions during the transearth coast
phase of the mission. These anomalous conditions are discussed in sec-
tion 14.1.4.

The primary guidance system provided good boost trajectory monitor-
ing during launch _nd the translunar injection maneuver. At earth orbit

insertion, the differences between the primary guidance velocity vector

and the Saturn guidance velocity vector were minus 5.8, plus 18.0, and

minus 7.1 feet per second in the primary guidance X, Y, and Z axes, re-

spectively. The magnitudes of the X and Z errors are typical of previous

Apollo missions and represent 1.2- and 0.8-sigma platform errors. The Y-

axis velocity error, which is primarily sensitive to gyrocompassing error,
reflects a 0.3-sigma (minus 0.0046 deg) azimuth misalignment. The small

error is a significant improvement over previous Apollo flights and rep-
resents an optimized X-gyro bias drift compensation. This technique was

used for the first time on this mission to minimize anticipated gyro-
compassing error.

f
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A history of primary guidance error coefficients is presented in

table 6-I. The preflight performance values were obtained from system

calibrations performed after the inertial measurement unit was installed

in the command module. The flight performance values are from platform

alignment data and accelerometer bias measurements made during the mis-
sion.

Table 6-II is a summary of inertial measurement unit realignments

performed during the mission. Table 6-III summarizes significant con-

trol parameters during service propulsion system maneuvers and the mid-
course correction maneuvers.

The previously mentioned gimbal lock warning indication occurred

during translunar coast Just after the inertial measurement unit was be-

ing realigned. The computer downmoded the inertial subsystem to the

coarse align mode which caged the platform to the existing attitude ref-

erence. In order to prevent the platform from being caged during time-

critical periods of flight, an erasable program was manually loaded into

the computer. The program prevented the computer from changing the stat-

us of the coarse-align discrete. During non-critical time periods, the

program was removed to preserve the coarse-align mode in the event of a

true gimbal lock condition.

After a normal undocking and separation maneuver from the lunar mod-

ule, the circularization maneuver was cancelled because an oscillation

was detected in the secondary yaw servo system for the service propulsion

system engine gimbal while performing the pre-ignitlon checklist. Analy-

sis of the flight data by ground personnel indicated that the cause of

the problem was an open circuit in the rate feedback loop. A review of

existing simulation data indicated that the system was safe to use. The

mission proceeded after a delay of three lunar revolutions, which repre-

sented the time required for the problem evaluation, trajectory considera-

tions, and preliminary changes to the flight plan. The circularization

maneuver was performed successfully on the primary servo system and the

secondary system was never required for control of the spacecraft. Re-

vision of the flight plan for all subsequent mission activities was neces-

sary because of this anomaly. Two command and service module service pro-

pulsion system maneuvers were ultimately eliminated from the prelaunch

plan.

Attitude control data taken during lunar orbital operations was ex-

amined by ground support personnel in an effort to minimize reaction con-

trol thruster activity during sleep periods and to improve spacecraft

pointing accuracy. During the Apollo 15 mission, gravity gradient torques

had a tendency to hold the vehicle against one side of the deadband. The

state vector integration routines in the computer would interrupt the dig-

ital autopilot orbital rate maneuver routines and allow the vehicle to



TABLE 6-1.- COMMAND AND SERVICE MODULE INERTIAL COMPONENT SUMMARY

Number Sample Sample Countdown Flight Inflightof standard

samples deviation mean value load performance

J_ Accelerometers

X - Scale factor error, ppm ...... 6 19 -255 -252 -310 --

Bias; cm/sec 2 ........ . . . 6 0.07. -0.i0 -0_0q_ -0.04 0.00

Y - Scale factor error, ppm ...... 6 32 -1294 -1337 -1330 --

Bias, em/sec 2 . . . . . . . . . . . 6 0.03 1.15 1.20 i.i_ 1.13

Z - Scale factor error, ppm ...... 6 49 -403 -3_8 -310 --

Bias, cm/sec 2 ........... 6 0.19 -0.23 -0.08 -0.13 -0.36

Gyroscopes

X - Null bias drift, meru ....... 6 0.37 -1.87 -1.8 i.i a -0.89 -+0.25

(1si_)
Accelerometer drift, spin reference
axis, meru/g ........... 6 0.53 -11.05 -10.6 -ll --

Aeeelerometer drift, input axis,

meru/g .............. 6 1.66 8.58 10.1 8 --

Y - Null bias drift, meru 6 0.95 -0.15 -0.1 -0.h -0.09 -+0.22

(1si_)
Aecelerometer drift, spin reference
axis, meru/g ........... 6 1.40 -13.53 -13.4 -14 --

Accelerometer drift, input axis,

merulg .............. 12 2.46 -6.41 -5.5 -7 --

Z - Null bias drift, meru 6 0.66 -1.98 -2.8 -i.7 -1.17 +0.19
(1si_)

Aceelerometer drift, spin reference

axis, meru/g ........... 6 0.29 -5.20 -5.0 -5.0 --

Aceelerometer drift, input axis, O_
meru/g 6 2.43 14.90 18.3 14 '. . . . . . . . . . . . . . ---- __

aAd_usted to minimize lift-off gyroco_assing azimuth error.



TABLE 6-11.- COMMAND AND SERVICE MODULE PLATFORM ALIGNMENT SUMMARY o_
!
CO

Gyro torquing angle,

Time, aprogram Star used deg Star angledifference, Gyro drift, meru Comments

hr:min option X Y Z deg X Y Z

00:88 3 23 Denebola, 30 Menkent 0.020 0.031 0.045 0.00 - Launch orientation

06:32 3 30 Menkent, 31 Arctarus 0.188 -0.035 -0.076 0.01 - Launch orientation

06:39 1 24 Gienah, Sl Arctarus - - 0.01 - Passive thermal control orientation

11:14 3 42 Peacock, 34 Atria 0.164 -0.022 -0.052 0.00 -2.37 0?32 -0?75 Passive thermal control orientation

29:40 3 27 Alkald, 31 Arcturus 0.631 -0.063 -0.197 0.01 -2.30 0.23 -0.72 Passive thermal control orientation

29:42 3 28 Denebola, 32 Alphecca 0.000 -0.005 -0.002 0.01 Passive thermal control orientation

39:03 3 Earth, Sun -0.463 0.861 11.480 0.07 - After gimbal dump

39:09 3 06 Acamar, 07 Menkar -0.010 -0.088 -0.109 - - After gimbal dump
39:13 3 12 Rigel, 21 Alphard 0.015 0.006 -0.004 0.01 Passive thermal control orientation

51:18 3 17 Regor, 22 Regulus -0.062 0.029 0.000 0.00 0734 -0-16 0700 Passive thermal control orientation

68:39 3 06 Acamar, 34 Atria -0.068 0.004 0.054 0.00 0.61 -0.04 0.49 Passive thermal control orientation

71:23 3 35 Rasalhague, 41 Dabih -0.032 0.017 0.006 0.00 0.78 0.41 0.15 Passive thermal control orientatior

71:28 1 35 Rasalhague, 41 Dabih 0.002 0.000 -0.001 0.00 - Lunar orbit insertion orientation

75:51 3 24 Giensh, 33 Antares -0.044 0.006 0.019 0.01 0_68 -0.09 0_29 Lunar orbit insertion orientation

75:59 1 23 Denebola, 30 Menkent -0.027 -0.151 0.034 0.01 Landing site orientation

76:01 3 23 Denebola, 30 Menkent -0.001 0.004 -0.O01 0.02 - - Landing site orientation

77:58 3 30 Menkent, 37 Nunki 0.011 0.015 0.009 0.01 -0.39 -0.53 0.32 Landing site orientation

81:41 3 41 Dabih, 44 Enif -0.029 0.005 0.012 0.01 0.51 -0.09 0.21 Landing site orientation

93:18 3 35 Rasalhague, 44 Enif -0.066 0.002 0.050 0.00 0.38 -0.01 0.29 Landing site orientation

i02:44 3 42 Peacock, 44 _if -0.013 -0.011 0.020 0.00 0.09 0.07 0.14 Landing site orientation
i18:38 3 35 Rasalhague, 44 Enif -0.077 0.006 0.075 0.00 0.32 -0.02 0.31 Landing site orientation

130:80 3 ..... 0.054 -0.016 0.067 0.01 0.30 0.09 0.38 Landing site orientation

146:21 3 25 Acrux, 24 Gienah -0.075 0.004 0.076 0.01 0.31 -0.02 0.32 Landing site orientation

164:35 3 22 Regulus, 24 Gienah -0.103 -0.001 0.097 0.38 0.00 0.35 Landing site orientation

168:06 3 30 Menkent, 37 Numki 0.000 -0.001 0.000 0.O1 0.00 0.02 0.00 Landing site orientation

168:10 1 .... 0.087 0.776 0.324 0.00 - Plane change orientation

168:12 3 30 Menkent, 37 Nunki 0.010 -0.007 0.003 0.01 - Plane change orientation
169:38 1 -- 0.108 0.061 0.001 0.01 - Lift-off orientation

170:50 3 27 A_aid, 31 Arctarus 0.005 -0.009 -0.004 - - Lift-off orientation

174:00 3 37 Nunki, 45 Fomalhaut -0.019 -0.019 0.020 0.01 0739 0.39 0?42 Lift-off orientation

190:09 3 21 Alphard, 30 Menkent -0.i00 0.002 0.095 - -0.41 -0.o1 0.39 Lift-off orientation

198:12 3 20 Dnoces, 27 Alkaid -0.032 0.001 0.034 0.00 0.27 0.01 0.28 Lift-off orientation

198:16 1 20 Dnoces, 27 Alkaid -0.375 -0.485 -0.868 0.00 Transearth injection orientation

201:50 3 3 Navi, 20 Dnoees -0.009 -0.014 0.047 0.01 0717 0_26 0-86 Transearth injection orientation
201:56 1 3 Navi, 20 Dnoces 0.811 -1.535 1.172 0.01 - Passive thermal control orientation

201:58 3 3 Navi, 20 Dnoces -0.007 0.006 0.007 0.01 Passive thermal control orientation
213:09 3 15 Sirius, 22 Regulus -0.040 0.030 0.058 0.00 0.22 -0718 0?34 Passive thermal control orientation

225:50 3 14 Canopus, 16 Procyon -0.039 -0.012 0.084 0.01 0.21 0.06 0.44 Passive thermal control orientation
241:18 8 21 Alphard, 26 Spica -0.035 0.002 0.125 0.01 0.15 -0.01 0.54 Passive thermal control orientation

261:07 3 i0 Mirfak, 12 Rigel -0.I03 -0.029 0.141 0.01 0.35 0.i0 0.47 Passive thermal control orientation

261:13 1 l0 Mirfak, 12 Rigel 0.127 -0.089 -0.436 0.01 Entry orientation

264:05 3 15 Sirius, 21 Alphard -0.014 -0.014 0.015 0.01 0?33 0?33 0_35 Entry orientation

aThe numbers used in this column represent the following: i - Preferred; 3 - REFS_AT.



TABLE 6_III.. GUIDANCE AND CONTROL MANEUVER SUMMARY

Maneuver

P_ete_ _ir0tI _....bitI_.....to_b_tI _......_ I_T...........I _.........J Secondl _i_d
midcourse ............... mldcourse

insertion insertion eir eularization I plane change injection mid ..... Ition correction correction
i I

Time

Ignition. hr:min:sec 30:39:00.66 74:28:27.87 78;33:45.04 i03:21:43.08 169:05:52.14 200:21:33.07 214:35:02.8 262:37:20.7

Cutoff. hr:min:sec 30:39:02.67 74:34:42.77 78:34:O9.39 I03:21:47.T4 169:05:59.28 200:24:15.36 214:35:25.4 262:37:27.1

Duration. min:sec 0:02.01 6:14.90 24.35 4.66 7.14 2:42.29 8.0 3.2

bveloeity gained, ft/sec
(actual/desired)

X 5.88/6.04 2786.35/2786.63 142.99/i_3.62 +0.25/-0.43 19.63/19.63 -894.13/-894.ii -0.20/-0.11 0.62/0.66
Y 9.01/9.42 265.06/265.07 141.32/141.85 ,70.26/-71.17 -59.37/-59.68 -2466.65/-2467.58 0.78/+0.90 -0.38/-0.50

Z 5.58/5.75 125.67/125.69 58.73/58.93 -39.56/-39.99 i07.02/i07.71 -2116.06/-2115.36 2.98/+3.30 -1.08/-1.19

CVelooity residuals, ft/see

X +0.i +0.2 +0.9 +0.3 +0.8 +0.2 Not applicable Not applicable
Y 0.0 _0.I -0.i +0.2 -0.4 +1.4 Not applicable Not applicable

Z +0.i 0.0 +0.i O.O -0.6 0.0 Not applicable Not applicable

Engine gimbal position, dee
Initial

Pitch +1.22 +1.18 +1.88 +0,53 +0.48 +0.66 Not applicable Not applicable

Yaw -0.12 -0.12 -0.63 +l.15 +0,98 +0,90 Not applicable Not applicable
Msximttm excursion

Pitch +0.34 +0.35 +0.31 -2.10 -2.13 -1.80 Not applicable Not applicable

Yaw -0.51 -0.42 -0,34 +2.04 +2.06 +1.95 Not applicable Not applicable
Steady-st_e

Pitch Not applicable +l.13 +1.66 +0.57 +0.44 +0.53 Not applicable Not applicable
Yaw Not applicable -0.04 -0.50 +1.02 +l.ll +1.24 Not _pplicable Not applicable

Cutoff

Pitch Not applicable 1.87 +1.70 +0.57 +0.48 +0.61 Not applicable Not applicable

Yaw Not applicable -0,71 -0.38 +i,02 +l.ll -0._2 Not applicable Not applicable

Maximum rate excursion, deg/sec

Pitch +0,15 -0.09 -0.14 +l.0h +l.00 +0.90 Not applicable Not applicable
Yaw +0.22 +0.14 +0.19 -1.O1 -1.O0 >±i.00 Not applicable Not applicable

Roll -0.26 -0.21 -0.11 -0.73 -1.00 >±i.00 Not applicable Not applicable

_Service propulsion system used for these maneuvers.
iInertial coordinates before trimming.

c Body coordinates after trin_in g.

Oh
I
kO
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drift slightly outside the deadband. This resulted in longer than de-

sired thruster firings as well as an unnecessary number of firings. Pro-

cedura& changes were made for Apollo 16 to reduce the state vector inte-

gration routine computation time and to bias the pointing vector such that

gravity gradient torques would hold the vehicle against the positive dead-

band only. Results indicate that the procedural changes halved the num-

ber of thruster firings and the pointing accuracy was improved by a fac-
tor of two.

The crew reported that the Teflon locking rings did not prevent the

optical eyeguards on the scanning telescope from unscrewing in zero g and
it was annoying to have to refocus the telescope each time it was used.

The cause of both problems was the nonavailability of flight hardware for

crew training. Flight hardware has been provided in training simulators.

The entry sequence, beginning with command module/service module

separation, was normal through landing. The guidance system controlled

the spacecraft attitude and lift vector during entry and guided the ve-
hicle to landing coordinates of 0 degrees 42 minutes 0 seconds south lat-

itude, 156 degrees 12 minutes 48 seconds west longitude, as determined
from the spacecraft computer.

6.7 PROPULSION

6.7.1 Reaction Control Systems

Performance of the service module reaction control system was normal

throughout the mission. Planned propellant consumption was exceeded by

about 90 pounds because of the unanticipated rendezvous maneuver with the

lunar module. Approximately 28 pounds of the propellant deficiency was re-

covered by subsequent systems management and by the deletion of two planned
maneuvers.

No preheating of the command module reaction control system was re-

quired prior to activiation. Checkout firings and systems performance

were satisfactory. Both systems were active during entry. The filters

and screens were found to be deformed when the regulators were disassem-

bled during postflight testing (see sec. 14.1.21). The propellant deple-

tion firing and system purge was not performed on this mission. However,
a "burp" firing from two engines in each system was initiated at an alti-

tude of about 350 feet to relieve the propellant manifold pressure. As

a result, pin-hole burns were detected in the recovered parachutes (see

sec. 14.1.18). The propellant isolation valves were in the closed posi-
tion for these firings.



6-11

An explosive failure of a ground support equipment decontamination

unit tank occurred during the postflight deactivation of the oxidizer (ni-

trogen tetroxide)portion of the Apollo 16 command module reaction control

system (see sec. 14.1.20).

6.7.2 Service Propulsion System

Service propulsion system performance was satisfactory during each

of the six maneuvers. Total firing time was 575.35 seconds. For times

of ignition and durations of firings, refer to table 6-III.

There were three deviations from expected conditions:

a. The onboard oxidizer and fuel tank pressure indications were

known to be biased plus 8 and minus 7 psi, respectively.

b. The oxidizer tank pressure indication became 15 psi higher at
zero-g than actual on both telemetry and onboard display (see sec. 14°1.2).

c. The propellant utilization valve was left in the normal position

throughout the flight because ofan electrical problem in the system noted

during prelaunch checkout.
/

Figure 6-1 shows the propellant unbalance for the lunar orbit in-

sertion and transearth injection firings as indicated by the telemetry

data. The auxiliary gaging system was activiated for the transearth in-

Jection firing; therefore, the figure shows the point sensor uncoverings

during firing as indicated by the auxiliary gaging data. The preflight-

expected unbalance is also shown in the figure.

6.8 ENVIRONMENTAL CONTROL SYSTEM AND CREW STATION EQUIPMENT

6.8.1 Environmental Control System

The environmental control system performed satisfactorily. Several

anomalies occurred, but none affected the mission significantly.

Shortly after orbital insertion, as the water/glycol reservoir was

being isolated, the system valves were inadvertently positioned to com-

pletely block the primary coolant loop. The system was supplying no add-

itional heat load in this configuration; therefore, the evaporator started

to freeze and the indicated backpressure reached the lower limit of 0.05

psia. The reservoir valves were repositioned, flow was restored, and the

evaporator recovered smoothly with no adverse effects.

f
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(a) Lunar orbit insertion maneuver. (b_ Transearth injection maneuver.

Figure 6-1.- Indicated oxidizer propellant unbalance.
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After translu_ar injection, the water/glycol temperature control cir-

cuit malfunctioned in the automatic mode. The temperature control valve

was positioned manually to maintain acceptable coolant loop temperatures.

The mean system temperature was slightly cooler than normal during lunsm

orbit operations. For a discussion of this anomaly, see section 14.1.1.

The Command Module Pilot reported having to use more than the usual

force in performing the third daily water chlorination. Also, some fluid

leakage was noted. A detailed discussion of this anomaly is contained in
section 14.1.7.

Two of the lithium hydroxide canisters used during solo lunar orbit

operations were difficult to remove. One was especially tight and con-
siderable effort was required in the removal. Section 14.1.15 gives fur-

ther details of this anomaly.

Following cabin depressurization for the transearth extravehicular

activity, the water/glycol in the cabin decreased in temperature. The de-

crease was over am 8-minute period. The primary water/glycol radiator out-

let temperature decreased from 30° F to 21 ° F, the evaporator water/glycol

outlet temperature decreased from 45° F to 32 ° F, and the suit inlet tem-

perature decreased from 48 ° F to 36.6 ° F. The water/glycol temperature
control valve was then adjusted and the evaporator outlettemperature sta-

bilized at approximately 57° F during the remainder of the extravehicular

activity.

A similar but less severe temperature decrease was observed at the

beginning of the Apollo 15 mission extravehicular activity. Temperatures
decreased and rettmned to normal about i0 minutes after the cabin had been

depressurized. Slight temperature fluctuations have also been observed

during depressurized cabin operations in the manned altitude tests. These

temperature changes are caused by the freezing of water that had condensed

earlier on the water/glycol lines. An evaluation of the Apollo 16 mission
cabin environment indicated a higher-than-normal humidity. This would

account for an increased amount of condensation and, therefore, greater

temperature excursions than were experienced dtming the chamber runs and

the Apollo 15 mission. Based on a 13° F decrease of the evaporator out-

let temperature, less than 173 Btu's were removed from the primary cool-

ant loop. This w_)uld require the sublimation of approximately 2.6 ounces
of water.

The vacuum cleaner failed after becoming clogged with dust. The vac-

uum cleaner was cleaned postflight and it operated properly. The design

of the vacuum cle_mer is such that lunar dust can clog the impeller.
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The cabin fans began to "moan" shortly after transearth injection
and the fans were turned off for the remainder of the mission. In post-

flight tests, the fans operated properly. This anomaly is discussed in
section 14.1.11.

The residue from approximately 1 teaspoon of water/glycol was dis-

covered on the command module floor during the postflight activities.

Traces of water/glycol were also found on the lower front edge of the
suit heat exchanger and on the coolant control side of the environmental

control unit (see sec. lh.l.19).

6.8.2 Crew Station/Equipment

Crew equipment performance was satisfactory. However, the extrave-

hicular mobility unit maintenance kit was swollen to about three times the
thickness of a similar kit which was stowed in the lunar module. The cause

of this anomaly is discussed in section 14.3.9.

The Command Module Pilot's Y-Y couch strut was difficult to extend

and lock during entry preparations. The Command Module Pilot commented

that there was no discernable clearance between the strut pad and the
command module wall. Postflight inspection indicated a clearance, but

did show wear and galling of the strut barrel (see sec. 14.1.17).

6.9 CONTROLS AND DISPLAYS

Performance of the controls and displays was normal, with the follow-

ing two exceptions:

Errors were present in the oxidizer and fuel tank pressure readings

and are discussed further in the instrumentation and propulsion sections.

The digital event timer, on panel l, began to malfunction about half-

way through the flight. A similar problem occurred during the Apollo lO
mission. This anomaly is discussed in section 14.1.13.

6.10 EXTRAVEHICULAR ACTIVITY EQUIPMENT

The environmental control system and crew equipment performed suc-

cessfully throughout the transearth extravehicular activity.
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The environmental control system suit loop pressure transducers, the

Commander's cuff gage, and the Lunar Module Pilot's cuff gage were in dis-

agreement during the time that the cabin was depressurized. See sections
14.1.12 and 14.3.8 for a discussion of these anomalies.

6.11 CONSUMABLES

All command _Id service module consumables remained well within red-
line limits.

6.11.1 Service Propulsion Propellant

Service propulsion propellant and helium loadings and consumption
values are listed in the following table. The loadings were calculated

from gaging system readings and measured densities prior to lift-off.

Condition Propellant, lb

Fuel Oxidizer Total

Loaded 15 676.2 25 070.3 40 746.5

Consumed 14 491.6 23 635.1 38 126.7

Remaining at end
of transearth

injection 1184.6 1435.2 2619.8

Usable at end of

transearth in-

Jection a699.1 1140.2 1839.3

aBased on 1140.2 lb oxidizer and the propellant utilization valve in
normal position.

Helium, lb
Condition

Storage Bottles Propellant Tanks

Loaded 86.6 5.4

Consumed 62.6 -

Remaining at end of

transearth injection 24.0 68.0
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6.11.2 Reaction Control System Propellant

Service Module.- The propellant utilization and loading data for the

service module reaction control system were as shown in the following

table. Consumption was calculated from telemetered helium tank pressure
histories and was based on pressure, volume, and temperature relation-

ships.

Propellant, ib
Condition

Fuel Oxidizer Total

Loaded

Quad A ii0 227 337

Quad B ii0 225 335

Quad C ii0 226 336

Quad D ii0 225 335

Total 440 903 1343

aUsable loaded 1252

Consumed 806

Remaining at
command module/
service module

separation 446

aUsable loaded propellant is the amount loaded minus the amount

trapped with corrections made for gaging system errors.
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6.11.4 Water

The water quantities loaded, produced, mad expelled during the mis-
sion are shown in the following table.

Condition Quantity, lh

Loaded (at lift-off)

Potable tank 24.5

Waste tank 35.2

Produced inflight

Fuel cells 476

Lithium hydroxide 22.7

Met aboli c 22. i

Dumped overboard

Waste tank 394.3

Potable tank 6.7

Skylab contamination

expe riment 7.8

Urine and flushing a76. 3

Evaporat or usage 9.9

Remaining at command module/

service module separation

Potable tank 36.3

Waste tank 49.2

aThis is the quantity required to complete the balance. Standard

Operations Data Book values based on an average metabolic rate of
467 Btu/hr indicate a urine and feces production of 77.0 lb. It

is estimated that less than 4 ib of water was used for flushing.
The difference between the Standard Operations Data Book values

(plus estimated flushing) and the quantity required to complete

the balance is approximately 4.7 ib and is negligible considering
the inaccmracy and uncertainty of the data used to obtain this bal-
an ce.
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Command Module.- The loading and utilization of command module reac-

tion control system propellant were as follows. Consumption was calcu-

lated from pressure, volume, and temperature relationships.

Propellant, ib
Condition

Fuel Oxi dizer Total

Loaded

System i 38.6 78.1 116.7

System 2 38.5 78.2 i16.7

Total 77. i 156.3 233.4

aUs able loaded 196.6

Consumed prior to

loss of signal

during entry

System i 28

System 2 28

Total 56

aUsable loaded propellant is the amount loaded minus the amount

trapped.
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6.11.3 Cryogenics

The total cryogenic hydrogen and oxygen quantities available at lift-

off and consumed were as follows. Consumption values were based on quan-
tity data transmitted by telemetry.

Hydrogen, ib 0xygen, ib
Condition

Actual Planned Actual Planned

Available at lift-off

Tank i 25.9 318

Tank 2 25.8 323

Tank 3 26.7 315

Total 78.4 78.4 956 956

Consumed

Tank i 18.7 188

Tank 2 18.6 152

Tank 3 16.7 186

Total 54.0 57.7 526 561

Remaining at command

module/service mod-

ule separation

Tank i 7.2 5.5 130 119

Tank 2 7.2 6.7 171 171

Tank 3 i0.0 8.5 129 105

Total 24.4 20.7 430 395



7.0 LUNAR MODULE PERFORMANCE

This section contains an evaluation of lunar module systems perform-

ance with emphasis on problems encountered during the mission. The con-

sumables usage is presented in section 7.8.

7.1 THERMAL, STRUCTURAL AND MECHANICAL SYSTEMS

Thermal performance was satisfactory. All temperatures remained with-

in acceptable limits; however, the modular equipment stowage area tempera-
tures did not follow the preflight predictions. Analysis and photographs

indicate that the thermal blankets were not completely closed. Also, the

television and 16-mm can_ra brackets were not removed. The presence of

these brackets along with the lunar communications relay unit ancillary

bracket, which may not have been removed, would prevent proper closure of
the blankets and cause the temperature increase.

The crew had difficulty in adjusting the modular equipment stowage

assembly to the proper height following deployment. This was not a hard-

ware problem; therefore, installation and training procedures will be re-
vised.

Structural loads were within design values based on guidance and con-

trol data, acceleration data, onboard pressure measurements, photographs,

and crew comments. Little or no gear stroking occurred during the lunar

landing as evidenced from approximately 6 inches of clearance between the
lunar surface and the undamaged descent engine skirt. The landed attitude

was estimated to be 2.3 degrees pitch up and 0.4 degree roll left.

A large number of long, thin, white particles were seen coming from
the left side (minus-Y side) of the ascent stage at transposition and dock-

ing. Inflight exs_ination and ground analysis verified that the thermal

paint on the micrometeoroid shields had flaked and peeled. No adverse

temperature effects were experienced from this anomaly, which is discussed
in detail in section 14.2.1.

The lunar surface television camera showed loose material on the as-

cent stage during the lunar lift-off. This material was later identified

as four thermal/micrometeoroid shields which were partially torn loose from

the base of the aft equipment rack. Temperattu'e control was maintained by

the thermal blankets located under the panels. Additional details of this

anomaly are given in section 14.2.2.
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7.2 ELECTRICAL POWER

The performance of the batteries and the electrical power distribu-

tion system was satisfactory. The lunar landing delay caused an unplanned

energy consumption of 200 ampere hours prior to descent. Because of power

load reductions while on the lunar surface, approximately 100 ampere-hours

were recovered in the planned-versus-actual electrical power budget. The
d-c bus voltage was maintained above 28.2 volts and the maximum observed

current was 72 amperes, during powered descent. Because the lunar module

did not deorbit, data were obtained until batteries 5 and 6 had dropped

to 21.7 and 21.5 volts, respectively.

After final egress from the lunar module, a master alarm was noted

on PCM data. Review of the closeout switch position checklist revealed

that the inverter select switch was left in the "inverter 2" position,
which resulted in the nuisance alarm. The switch should have been left

in the "off" position which inhibits the alarm.

7.3 COMMUNICATIONS

With the exceptions discussed in the following paragraphs, all func- -

tions, including voice, data, and ranging of both the S-band and VHF equip-
ment operated satisfactorily during all phases of the mission.

The steerable antenna would not move in the yaw axis during initial

activation. Several unsuccessful activation attempts were made in both

the manual slew and auto track modes (see sec. 14.2.3). Except for a

short period of time when the vehicle attitude was changed to point the
steerable antenna at the earth, all S-band communications were maintained

using the omnidirectional antennas. As expected, the voice and data qual-

ity were degraded by the resulting low signal strength. During lunar rev-

olutions 12, 13, and 14, variations in signal strength of l0 to 15 dB were

experienced while using the forward omnidirectional antenna. An example
of this variation is shown in the ground-station-recelved signal plot in

figure 7-1. This condition occurred at both the Madrid and Goldstone

ground stations. An analysis of the data indicates that the reduction in

signal always occurred within small areas of the antenna pattern. The

most probable cause of this is multipath reflections from portions of the
vehicle structure such as the rendezvous radar antenna dish. A detailed

antenna gain pattern will be plotted of this critical area to better de-

fine what can be anticipated for Apollo 17 in the event that the omni-

directional antennas are required.
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Figure ?-l.- Madrid ground station received signal.

At times during the mission, it was necessary to change the system
configuration from "normal voice" to "down voice backup". At the time
of switching, the down-link signal strength dropped abruptly for a short
period. This was caused by a transient in the S-band transceiver output
which caused the power amplifier to recycle. During this time, the sys-
tem operates in the low-power mode which is reflected in signal strength
reduction. This condition was discovered prior to the flight of Apollo
ii. No change was warranted due to its random occurrence and the rela-
tively small effect that it has on a mission.

The lunar module cre_rmenreported voice quality of the VHF B channel
was degraded during ranging operation. The ranging switch was left on in
the command and service module at all times even when ranging data were
not being monitored. This degradation is inherent in the ranging system
design.

During the communications check prior to the first extravehicular
activity, the microphone audio signal from the Lunar Module Pilot's head-
set was too weak to operate the voice-operated keying circuitry in his
extravehicular co_nunications system. This was attributed to a loose tip
on one of the comm_mications carrier headset microphone booms plus orange
Juice blockage of the other microphone boom. This anomaly is discussed
in section 14.3.5.

7.4 RADAE

Landing radar performance was satisfactory. Two successive landing
radar self-tests produced erroneous data, but a third self-test, performed
approximately 30 minutes later, was normal in all respects. Analysis in-
dicates the two unsuccessful self-tests resulted from lockup to signal re-
turns from the lunar surface rather than the self-test stimulus. During
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descent, velocity and range acquisition occurred at a slant range of ap-

proximately 48 700 feet. There was no evidence of dropout in signal track-

ing between acquisition and touchdown.

The rendezvous radar performance during separation and during the

rendezvous sequence was normal. The rendezvous radar acquired the com-

mand and service module transponder during ascent at a range of approxi-

mately 150 miles. Data indicates good correlation between the rendezvous

radar and VHF ranging system.

During the platform alignment prior to powered descent, the rendez-

vous radar antenna drifted into view of the alignment optical telescope.

This is normal since, in the unpowered state, the antenna holds its ori-

entation only by inherent frictional resistance, but this is not great

enough to resist the inertial loading on the antenna.

7.5 GUIDANCE, NAVIGATION, AND CONTROL

The guidance, navigation, and control system performance was normal

throughout the manned lunar module activities. The unmanned deorbit maneu-

ver to impact the ascent stage on the lunar surface was not accomplished

because of the loss of attitude control capability. This anomaly is dis-

cussed in greater detail later in this section and in section 14.2.6.

The primary guidance system was activated at 94 hours 33 minutes;
the computer timing was then synchronized to the command module computer,

and the platform was aligned to the command module guidance system. A

manual update to the state vector in the computer was required because

of the S-band steerable antenna problem. A summary of all primary guid-

ance system platform alignments is shown in table 7-1. Table 7-11 con-

tains a summary of mission and preflight inertial component histories.

The inertial instruments performed well; only one update was required,
for an accelerometer bias term.

The abort guidance system was activated following a normal undocking

and separation from the command module. A summary of preflight and in-

flight performance of the abort guidance system accelerometers and gyros

is shown in table 7-!11. The first lunar surface calibration indicated

that the X-gyro bias drift had shifted from the previous calibration by

i.i degrees per hour. Although greater than expected, this shift was

within acceptable limits.

Following a three-orbit delay, the powered descent was initiated and

was normal with two minor exceptions:



TABLE 7-1.- LUNAR MODULE PLATFORM ALIGNMENT SUMMARY

Alignment mode Star angle Gyro torquing angle, deg

Time Type ' ' I I I difference, 1 Ihr :rain alignment Options Techniqueb Detent c ' Star Detent c Star deg X Y Z

96:58 52 3 -- 26-Spica 2 B3-Antares -0.05 -0.060 0.139 -0. 018

102 :h2 52 1 -- 26-Spica 2 33~Antares -0.01 -0.067 0.108 0.050

105 :03 57 3 3 h0-Alt air .... 0.01 -0.019 O.038 -0.021

173:49 57 4 3 04-Achernar -- 0.03 -0.540 0.046 -0.056

174: 58 57 3 3 04-Achernar -- 0.04 -0.019 0.017 -0. 012

81 - Preferred; 2 - Nominal; 3 - REFS_4AT; 4 - Landing site.

b0 - Stored attitude; 1 - REFS_AT + g; 2 - Two bodies; 3 - 1 body + g.

Cl - Left front; 2 - Center; 3 - Right front; 4 - Right rear; 5 - Rezr; 6 - Left rear.

l
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TABLE 7-11.- LUNAR MODULE INERTIAL COMPONENT HISTORY a

Inflight performance

Parameter Countdown Flight
value load Power-up Surface Lift-off

to power-up to through
surface li ft-off rendezvous

(a) Accelerometers

X - Axis

Scale factor error, ppm ....... _816 -890 -

Bias, cm/sec 2 ............ 1.83 1.84 1,83 1.84 1.81

Y - Axis

Scale factor error, ppm ........ 403 _400 .

Bias, cm/sec 2 ............ 1.57 1.60 1.62 1,66 1.65

Z - Axis

Scale factor error, ppm ........ 526 -4.70 -

Bias, cm/sec 2 ............ 1.23 1.16 1.24 1.23 1.25

(b) Gyroscopes

X - Axis

Null bias drift, meru ........ 0.3 -0.3 0.78 1.15 -

Acceleration drift along spin

reference axis, meru/g ...... -0,3 _i.0

Acceleration drift about input

axis, meru/g ........... 13.1 13.0

Y - Axis

Null bias drift, meru ......... 0.9 0.6 -1.26 -1.03 -

Acceleration drift s.long spin

reference axis, meru/g ....... 6.7 -h.0

Acceleration drift about input
axis, meru/g ............ 6.0 -3.0

Z - Axis

Null bias drift, meru ........ -2.3 -2.6 0.58 -0.73

Acceleration drift along spin

reference axis, meru/g ...... 3.6 3.0

Acceleration drift about input
axis, meru/g ........... 17.7 14.0

aThe pre-countdown samples, means, and standard deviations normally given in this table are not

available because the inertial measurement unit was changed in the spacecraft Just before lunar
module closeout.
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TABLE 7-111.- ABORT GUIDANCE SYST_ CALIBRATION HISTORY

Acceleromet ers

Preflight performance Infli_it performance

a_tatic bias, _g Number of Mean of Staudarddeviatio_ Flight System Pre- Post-
calibrations calibrations of load activation descent ascent

calibr _tions

X 21 -.009 0.001 +0.010 +0.008 +0.0072 +0.0066

Y 21 -0.001 0.0003 -0 _001 -0.001 -0.0023 -0.0024

Z 21 -0.002 0.0002 -0. 002 -0.002 -0.0025 -0° 0027

Gyros

Preflight performance Inflight performance

Gyro drift, St audar_

deg/hr Nt_ber of Means Of deviation Flight System Surface Surface
calibrations calibrations of loa_ activation calibration calibration Post-ascent

calibrations no. i no. 2

X 21 0.03 0.05 -0. l0 -0.06 -1.16 -1.13 Varying

Y 21 -0.29 O. 02 -0.27 -0.45 -0.52 -0.60 -0.60

Z 21 0.55 0.03 0.59 0.29 0,68 0.64 -0,64

a. An out-of-plane velocity component difference became apparent be-
tween the abort and primary guidance systems. [_is increased to a maximum

of 28 feet per second near lunar touchdown.

b. The abort guidance system indicated a roll axis misalignment of

0.47 degree from the primary guidance system following the lunar landing.

These problems are discussed in section 14.2.7.

A time history of altitude during descent and several significant

events pertaining to landing radar performance are shown in figure 7-2.
Table 7-IV contains the sequence of events during powered descent. The

total effect of the landing point redesignations was to move the landing
site coordinates 189 meters (620 ft) uprange and 194 meters (635 ft) south.

Data became noisy as the lunar module approached the lunar surface and this

precluded a detailed analysis of the landing dynamics.

Performance d_ing ascent was normal. Velocity residuals were low

and no trim maneuver was required; however, a vernier adjustment maneuver

was performed. Table 7-V contains a summary of insertion conditions as

indicated by the primary and abort guidance systems and by the powered

flight processor (ground computation). Table 7-VI is a summary of ren-
dezvous maneuvers obtained from several sources.
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TABLE 7-1V.- SEQUENCE OF EVENTS DURING POWERED DESCENT

Time from
Elapsed time,
hr:min:sec ignition, Event

min:sec

104:17:18 -00:07 Ullage on
104:17:25 00:00 Ignition

104:17:53 00:28 Throttle to full-throttle position

104:19:16 01:51 Manual target (landing site) update-
Noun 69

104:20:38 03:13 Landing radar velocity data good

104:21:24 03:59 Landing radar range data good

104:21:54 04:29 Enable landing radar updates - Verb 57

104:24:14 06:49 Enter landing point redesignation phase
104:24:54 07:29 Throttle down

104:26:50 09:25 Landing radar antenna to position 2

104:26:52 09:27 Approach phase program selected

Program 64, and pitchover

104:27:20 09:55 First landing point redesignation

104:27:32 10:07 Landing radar to low scale
104:28:37 11:12 Select attitude hold mode

104:28:42 11:17 Select landing phase program -

Program 66

104:29:35 12:10 Lunar landing (approximate)

TABLE 7-V.- LUNAR ASCENT INSERTION SUMMARY

Velocity in inertial

Altitude, coordinates, ft/seeSource
ft

X Y Z

Primary guidance system 59 957 -958.82 0.77 5441.84

Abort guidance system 59 665 -959.83 -2.81 5441.77

Powered flight processor 59 750 -959.94 2.19 5442.52

/
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TABLE 7-VI.- RENDEZVOUS SOLUTIONS

Computedvelocity change, ft/sec
Local

Maneuver vertical Command
Lunar module Abort guidancecoordinates module

computer guidance computer system

Terminal AVx 78._ 78.0 78.3
phase AVy 2.4 2.7 2.9
initiation AVz -3.8 O.7 -3.7

Total 78.5 78.O 78._

First AVx -0.2 -0.3 O.0
midco_s • AVy -0.i -0.i O.9
correction AVz -0.4 +0.9 0.8

Total 0.5 1.0 1.2

Second AVx 0.5 0.5 0.6
mideourse AVy -0.5 0.2 0.9
correction AVz 2.2 O.7 i.0

Total 2.3 0.9 1.5

After docking, the lunar module was powered-down and the crew re-

turned to the command module overnight. Power was reapplied to the pri-
mary guidance and controlsystem the next day, but the 28-volt-dc enabl-

ing voltage did not reachthe primary preamplifiers. Consequently, the
control system could not issue engine firing cormnands. There was no

thruster firing activity following Jettison and the deorbit maneuver was
not performed.

7.6 PROPULSION

7.6.1 Reaction Control System

Performance of system B was normal throughout the mission; however,

an anomalous condition developed when system A was activated. The regu-
lated outlet pressure increased beyond the specification lockup pressure

of the system. This was attributed to regulator leakage. The condition

persisted throughout the mission causing intermittent operation of the

helium relief valves and overboard venting of the pressurant gas. The

leakage of helium through the regulator and subsequent venting overboard

was not high enough, however, to require a blowdown operation. To re-

lieve this condition, the ullage volume in system A was increased by



_ 7-ll

transferring a portion of the propellants to the ascent propulsion tanks.
The ullage volume in system A tanks was thereby increased, providing suf-
ficient blowdown capability so that this system could be used as a back-
up in case of a malfunction in system B. The problem is discussed further
in section 14.2.4.

7.6.2 Descent Propulsion System

The descent propulsion system performed well during powered descent
with one exception. The gaging system fuel probes indicated a lower-than-
expected fuel quantity. This condition existed throughout the firing and
is believed to have been caused by a difference in the conductivity of
the fuel in the reference conductor and the measuring conductor. Previ-
ous testing of these probes has shown similar errors when such differ-
ences exist. Total firing time was about 731 seconds. The usable pro-
pellant quantity remaining (1128 pounds) would have provided approximate-
ly 102 seconds of hover time.

7.6.3 Ascent Propulsion System

System performance was satisfactory during the lunar ascent and the
terminal phase initiation maneuver. Ascent firing duration was _27.7 sec-
onds. Terminal phase initiation firing duration was estimated to be 2.5
seconds, making the total firing time approximately _30.2 seconds.

Two upward shifts in the engine chamber pressure were recorded dur-
ing the ascent maneuver, as shown in figure 7-3. A review of all other
available engine and acceleration data failed to substantiate the increased
chamber pressure indication. The crew did not recall feeling additional
acceleration or surges during the maneuver. This anomaly is discussed
further in section 1_.2.8.

7.7 ENVIRONMENTAL CONTROL

The performance of the system was satisfactory. Two anomalies which
occurred are discussed in the following paragraphs.

One off-nominal condition was experienced approximately 2 hours after
system activation when the suit circuit valves were configured to the cabin
mode of operation. The crew reported hearing a chattering noise and exper-
ienced pressure pulsations in suit circuit flow. The problem was traced



7 -12

140

,_-130

ul

_ i20

S

-g

_ iiO
uJ Engine ignition occurred

at 175;31=47.9

I
100
175:34:07 175:34:27 175:34:47 175:35:07 175:35:27

"rime, hr:min:sec
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Figure 7-3.- Ascent propulsion system pressure fluctuations.

to the cabin gas return valve which apparently failed to open in the auto-

matic mode. Manual control was used for the remainder of the mission al-

though the automatic mode was checked subsequently and found to be opera-
ble. See section 14.2.5 for further discussion of this anomaly.

Fluctuations in the water/glycol pump differential pressure were noted

following the cabin depressurizations for each extravehicular activity.
Pressure fluctuations occurred in the same manner after two of four extra-

vehicular activities on Apollo 15. The heat transfer performance of the

system was satisfactory. An analysis of this anomaly is given in refer-
ence 4.
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7.8 CONSUMABLES

All lunar module consumables remained well within red-line limits.

7.8.1 Des cent Propulsion System

Propellant.-The descent propulsion system propellant load quantities
shown in the following table were calculated from known volumes and weights

of offloaded propellants, temperatures, and densities prior to lift-off.

Quantity, Ib

Condition
Fue i Oxi dizer Tot al

Loaded 7530.4 12 028.9 19 559.3

Consumed 7105.4 ii 221.9 18 327.3

Remaining at engine cutoff:

Total 425 807 1232

Usable 396 732 1128

Supercritica_ helium.- The quantities of supercritical helium were

determined by computations using pressure measurements and the known vol-
ume of the tank.

Quantity, ib
Conditi on

Act ual Pre dicted

Loaded 51 •2 51.2

Consumed 41.8 42.7

Remaining at landing 9.4 8.5

/
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7.8.2 Ascent Propulsion System

Propellant.- The ascent propulsion system total propellant usage was
approximately as predicted. The loadings shown in the following table

were determined from measured densities prior to launch and from weights
of off-loaded propellants.

Propellant mass, ib apredicte d

Condition quantity,

Fuel Oxidizer Total

Loaded 2017.8 3224.7 5242.5 5242.5

Transferred from

reaction con-

trol system 16.0 44.0

Total on board at

lunar lift-off 2033.8 3268.7

Consumed 1869.8 3011.0 4880.8 4903.6

Remaining at ascent

stage jettison 164.0 257.7 421.7 338.9

i

aPropellant required for ascent was reduced by 80.0 ibm to account
for reaction control system consumption.

Helium.- The quantities of ascent propulsion system helium were de-
termined by pressure measurements and the known volume of the tank.

Actual Quantity,Condition
ib

Loaded 13.2

Consumed 8.4

Remaining at ascent stage
jettison 4.8
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7.8.3 Reaction Control System Propellant

The reaction control system propellant consumption was calculated

from telemetered helium tank pressure histories using the relationships
between pressure, volume, and temperature.

Actual quantity, ib Predicted

Condition quantity,
Fue i Oxi dizer Tot al ib

Loaded

System A 107.4 208.2 315.6

System B 107.4 208.2 315.6

Total 631.2 631.2

Transferred to

ascent propul-

sion system 16.0 44.0 60.0

Consumed to:

Lunar landing 125 142

Docking 212 266

Remaining at ascent

stage jettison 359.2 365.2
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7.8.4 O_ygen

The actual quantities of oxygen loaded and consumed are shown in the

following table :

Act ual Pre dict ed
Condition

quantity, ib quantity, ib

Loaded (at lift-off)

Descent stage

Tank i 46.7

Tank 2 46.6

Ascent stage

Tank i 2.4

Tank 2 2.4

Total 98.]

Consumed

Descent stage

Tank i 21.9 25.7

Tank 2 21.5 25.6

Ascent stage

Tank i 0 0

Tank 2 0 0

Total 43.4 51.3

Remaining in descent stage
at lunar lift-off

Tank i 24.8 21.0

Tank 2 25.1 21.0

Remaining at docking
(ascent stage)

Tank i 2.4 2.4

Tank 2 2.4 2.4

Total 4.8 4.8
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7.8.5 Water

The actual water quantities loaded and consumed, shown in the follow-

in_ table are based on telemetered data.

Act ual apre dicted
Condition

quantity, ib quantity, ib

Loaded (at lift-off)

Descent stage

Tank I 193.9

Tank 2 199.4

Ascent stage

Tank i 42.5

Tank 2 42.5

Total 478.3

Consumed

Descent stage (lunar lift-
off)

Tank 1 193.9 192.4

Tank 2 199.4 197.9

Ascent stage (docking)

Tank I 7.2 7.5

Tank 2 6.9 7.5

Total 407.14 405.3

Remaining in descent stage
at lunar lift-off

Tankl bo i.5
Tank 2 b0 i. 5

Remaining in ascent stage

at docking

Tank i 35.3 35.0

Tank 2 35.6 35.0

Total 70.9 70.0

aAdjusted to compensate for the additional 5 hours in lunar orbit

prior to descent.

bBecause of the extended lunar module activity, the descent stage

water tanks reached depletion at the s_ne time the crew selected

ascent stage consumables.
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7.8.6 Electrical Power

The total battery energy usage is given in the following table.

Power consumed, ampere hours
Available power,

Battery
ampere hours Actual Predicted

Descent 2025 1746 1646

Ascent 592 a285 285

aBatteries 5 and 6 provided a total of 285 ampere hours through crew

transfer. The total energy provided by batteries 5 and 6 until data

loss was 358.9 and 377.8 ampere hours, respectively.
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8.0 LUNAR SURFACE EQUIPMENT PERFORMANCE

8.1 LUNAR ROVING VEHICLE

The lunar roving vehicle performance was good; however, several sys-
tem problems occurred. These problems are:

a. Higher-than-expected battery temperatures

b. Multiple failures of instrumentation hardware

c. Loss of rear fender extension

d. Temporary loss of rear steering.

Procedural errors resulted in the temporary loss of rear drive power and

a temporary loss of all navigation displays except heading and speed.

The approximate distances driven during the three extravehicular ac-

tivities were 4.2, ll.1 and ll.4 kilometers for a total of 26.7 kilome-

ters. Speeds up to 14 kilometers per hour were achieved on the level sur-

face. Slopes estimated to be as steep as 20 degrees were negotiated with-
out difficulty.

The lunar roving vehicle provided electrical power for voice, telem-

etry, and television communications throughout the first two extravehic-

ular activities, _id also provided power for television operations after

the third extravehicular activity. A total of 98.2 ampere-hours was con-
sumed from the 242 ampere-hours available in the two batteries.

Several minor problems, which subsequently disappeared, were experi-

enced during the activation of the lunar rover. The rear steering was

inoperative, the battery 2 ampere-hours remaining and voltage readings
were off-scale low_, and both battery temperatures were off-scale low (see
sec. 14.6.1 and 14.6.2).

After returning to the lunar module near the end of the first trav-

erse, the Commander performed a lunar roving vehicle evaluation while the

Lunar Module Pilot took 16-mm documentary motion pictures.

At the conclusion of the first extravehicular activity, the vehicle

was parked with the front of the vehicle pointing towards the north. The

battery temperatures were 104 ° F and 105 ° F with 108 and 105 ampere-hours

remaining. The battery covers were brushed and opened, the radiator sur-

faces were dusted, and the power-doE was completed. The battery covers
did not close between the first and second extravehicular activities and

temperatures at power-up for the second extravehicular activity were
• 70 ° F and 82° F.
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On the second traverse, the attitude indicator pitch scale fell off,

but the needle was still used to estimate pitch attitudes (see sec. 14.6.4).

Incorrect matching of switches caused a loss of rear-wheel drive. Correct

switch configuration returned the vehicle operation to normal. The crew

noted that the forward wheels tended to dig in when attempting to climb

slopes without rear-wheel power. The right rear fender extension was

knocked off and, thereafter, dust was thrown up from the right rear wheel

and covered the crew, the console, and the communications equipment. Mid-

way through the second extravehicular traverse, the ampere-hour integrator
for battery I began indicating about four times the normal battery usage.

Because of higher-than-desired temperatures on battery l, a series of pro-
cedures were initiated to lower the load. These procedures probably

caused the inadvertent removal of drive power from a pair of wheels,

thereby losing two odometer inputs and the associated static range, bear-

ing, and distance displays (see sec. 14.6.3). The problem cleared when
the normal switch and circuit breaker configuration was restored.

At power-up for the third traverse, the battery covers were closed

manus_ly and the lunar communications relay unit was switched to its own

power. The lunar roving vehicle battery temperatures were 102 ° F and

120 ° F. About 2 hours after power-up, the caution and warning flag was

activated because the battery 2 temperature exceeded 125 ° F. Rear-wheel

drive power and steering were switched to battery 1 bus B. Later, the

battery i temperature indicator went off-scale low, indicating a meter --
failure. Both batteries were functional at the end of the third extrave-

hicular activity when the lunar roving vehicle was configured to provide

power for television. The closeout reading of the battery 2 temperature
was 143 ° F.

8.2 LUNAR COMMUNICATIONS RELAY UNIT AND
GROUND COMMANDED TELEVISION ASSEMBLY

The lunar communications relay unit and ground commanded television

assembly operated for 12 hours 44 minutes during the lunar surface extra-
vehicular activities. The relay unit in conjunction with the television

camera was energized by up-link command for lunar module ascent television

coverage and for six days of scientific lunar surface observations on a

once-per-day basis until April B0, 1972. At that time, the system could

not be energized by up-link command. Down-link data from the relay unit

on the preceding day showed the expected temperatures, internal voltages,

and RF signal strength. Possible causes of the problem include: (1) mal-
function of the television control unit up-link decoder due to its pre-

launch predicted high temperature condition (above qualification level),
and (2) loss of input power because of incorrect circuit breaker config-

uration on the lunar roving vehicle that would have placed only one of
the two batteries on the line.



8.3 EXTRAVEHICULAR MOBILITY UNIT

Throughout the three extravehicular activities, the performance of

the extravehicular mobility units was satisfactory and the crew were able

to perform their functions in an effective manner. Telemetry data were
not available until after crew egress from the lunar module because of the

steerable antenna malfunction (see sec. 14.2.3), therefore, consumables

were computed based on previous experience with these units as well as

telemetry data.

The crew had some difficulty in closing the restraint zippers during

donning of the s_Ats. The suits are custom fitted and, by necessity, must

be tight to achieve good mobility. Particular attention will be given to

the self-donning of suits during training and a restraint zipper hook has

been provided on Apollo 17 as a donning aid.

The checkout of the portable life support system was normal on each

extravehic_]ar activity. Higher-than-predicted heat loads were experienced
on the first and third extravehicular activities ; however, thermal equilib-

rium was maintained well within acceptable limits even when the crew oper-

ated for a considerable length of time in an area of sun reflection from
boulders. The heat was so intense that the crew commented that they could

feel it. Primary feedwater supply depletion tones occurred during the

first extravehic_,]ar activity. A warning tone was received for depletion

of the Lunar Mod_gLe Pilot's auxiliary feedwater supply near the end of the

first extravehic_Llar activity when his water supply was depleted.

The purge wLlve pin on the Commander's suit was accidentally pulled

out twice during the first extravehicular activity while ingressing the

lunar roving vehicle. Both times, the pin was found and reinserted with-

out any adverse effect. To prevent a recurrence during subsequent trav-

erses, both crewmen rotated their purge valves to prevent the pins from

being accidentally removed (see sec. 14.3.10).

During ingress after the second extravehicular activity, the Commander

broke the tip off of his antenna. The two crewmen exchanged units to pre-

clude a possible limitation on range. Section 14.3.2 contains a discussion

on this anomaly.

After expos1_re to a dusty lunar environment, the both crewmen's suit

wrist-ring disconnects were hard to rotate to the locked and unlocked

position. This _uomaly is explained in section 14.3.4.

Oxygen, power, and feedwater consumption of the extravehicular mo-

bility units during the three extravehicular periods is shown in table 8-I.
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TABLE 8-1.- EXTRAVEHICULAR MOBILITY UNIT CONSUMABLES

Commander Lunar Module Pilot
Condition

Actual aPredieted Actual aPredicted

First extravehicular activity

Time, min 431 420 431 420

boxygen, lb
Loaded 1.93 1.86 1.93 1.86

Consumed 1.24 1.36 1.51 1.36

Remaining 0.69 0.50 0.42 0.50
Redline limit 0.37 0.37

bFeedwater, lb
Loaded 12.16 12.16 12.11 12.16

Consumed 9.08 9.04 11.62 9.04

Remaining 3.08 3.12 0.49 3.12
Redline limit 0.87 0.87

Battery, amp-hr

Initial charge 25.4 25.4 25.4 25.4
Consumed 20.7 19.4 21.0 19.35

Remaining 4.7 6.0 4.4 6.05
Redline limit 3.28 3.28

Second extravehicular activity

Time, min 444 420 444 420

b0xygen, ib
Loaded 1.81 1.81 1.81 1.81

Constuned 1.22 1.31 1.26 1.31

Remaining 0.59 0.50 0.55 0.50
Redline limit 0.37 0.37

bFeedwater, Ib
Loaded 12.46 12.46 12.41 12.46

Consumed 9.48 9.21 10.28 9.21

Remaining 2.98 3.25 2.13 3.25
Redline limit 0.87 0.87

Battery, amp-hr
Initial charge 25.4 25.4 25.4 25.4
Consumed 21.4 19.4 21.0 19.4

Remaining 4.0 6.0 4.4 6.0
Redline limit 3.28 3.28

NOTE: Refer to following pages for notes a and b.
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TABLE 8.1.- EX_?RAVEHICULAR MOBILITY UNIT CONSUMABLES - Concluded

Commander Lunar Module Pilot

Condition Actual apredicted Actual apredicted

Third extravehicular activity

Time, min 341 420 341 420

b0xygen, lb
Loaded 1.81 1.81 1.81 1.81
Consumed 1.04 i.34 1.02 i.34

Remaining O.77 0.h7 0.79 O.47
Redline liz_it 0.37 0.37

bFeedwater, lb
Loaded 12.46 12.46 12. hl 12.h6

Consumed 8.21 9 •34 8.38 9.34

Remaining 4.25 3.12 h.03 3.12
Redline limit 0.87 0.87

Battery, amp-hr
Loaded 25.4 25.4 25. h 25.4
Consumed 16.7 19.h 16.4

Remaining 8.7 6.0 9.0
Redline limit 3.28 3.28

NOTES

aThe following values were used in the preflight prediction calculations for
both crewmen.

Period 0rygen leak rate, Heat leak rate,
lb/hr Btu/hr

First extravehicular activity 0.02 0

Second extravehicular activity 0.028 215

Third extravehicular activity 0.035 225

bThe following values were used for postflight calculations,

Commander Lunar Module Pilot

Period
Oxygen leak Heat leak Oxygen leak Heat leak
rate, lb/hr rate, Btu/hr rate, lb/hr rate, Btu/hr

First extravehicular activity 0.019 135 0.013 135

Second extravehicular activity 0.021 220 0.0210 220

Third extravehicular activity 0.020 290 0.0210 290
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9.0 PILOT'S REPORT

This section contains a description of the Apollo 16 mission as per-

formed by the crew. Specific mission features and equipment operations
which were different than Apollo 15 are covered. Some mission activities

were modified because of the delay in performing the circularization ma-

neuver, and the effects of those changes are addressed. The flight plan,
as executed, is summarized in figure 9-1 at the end of this section.

9.1 TRAINING

The Apollo 16 crew was fortunate in that they had been assigned to

J-mission spacecraft from the beginning of their training. From April of
1970, they participated in Apollo 15 spacecraf_ tests as well as those of

their own vehicles. The Commander and Lunar Module Pilot participated in

early reviews of the J-mission surface hardware, of the extended-stay lu-

nar module, and of the lunar roving vehicle. 'Fne majority of the proced-

ure development time for the Commander and Lunar Module Pilot was spent on

lunar surface operations, and 40 percent of the total training of these
two crewmen was in lunar surface science.

The Command ]Module Pilot training can be broken into the following
discrete phases:

Phase I. Basic Apollo background

a. Hardware

b. Software

c. Mission techniques

d. Lunar science

Phase II. Mission-dependent procedures

a. Experiment procedures

b. Flight plan development

c. Ground track and specific lunar science study

Phase III. Pilot proficiency

a. Flight plan study

b. Contingency training
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c. Operational techniques

d. Experiments practice

e. Personal

1. Physical conditioning

2. Aircraft proficiency

Because of the sophistication and complexity of the Apollo J missions,

several years of intensive training are required to properly support the

objectives. Phase-I training was essentially completed during the Command

Module Pilot's preparation for previous missions. Hardware for the sci-
entific instrument module and the command module extravehicular activity

hardware were the only Phase-I training items required during the two years

immediately preceding the flight of Apollo 16. The last two months prior

to flight should have been devoted to Phase-III proficiency training; how-

ever, a 30-day delay in the launch of Apollo 16 was announced in January

1972. The delay occurred after the preliminary flight plan had been is-

sued and resulted in a great deal of Phase-III training being postponed
until March.

Visual observations of the lunar surface were emphasized throughout

the training, and during the final 12 months, nine aircraft flyovers were
made over selected terrestrial features, and many briefing sessions were

included. Mission experience indicates that training of this type and in-

tensity is essential to take full advantage of the orbiting observer's

vantage point.

Command module experiments were tailored to take advantage of the

moon as an occulting disk while executing low-light-level photography of

celestial targets. This effort required a considerable amount of the Com-
mand Module Pilot's time in developing procedures which were compatible

with orbital operations of the command and service module.

The pacing items during the Apollo 16 training period were the de-

velopment of the flight plan and the experiments checklist.

The increased emphasis on orbital science requires that the Command
Module Pilot receive detailed real-time training in flight-plan execution

that is analogous to the surface crew's extravehicular activity training.

However, unlike lunar module crews undergoing concurrent training, where
the lunar module mission simulator and extravehicular activity facilities

can be scheduled interchangeably, the command module pilots must use the
same trainer for all their activities. This means that verification of

a 290-hour flight plan, proficiency training, and network simulation ex-
ercises must be accomplished for two crews in one facility. The command

and service module mission simulator was used in the evenings for stowage

exercises and this proved to be a worthwhile use of the Command Module
Pilot 's time.
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To optimize usage of the command and service module mission simula-

tor, most Command Module Pilot extravehicular activity training was con-

ducted in the Manned Spacecraft Center mockup, while rendezvous training

was conducted primarily in the command module procedures simulator.

The Command Module Pilot's training, as reflected in the formal train-.

ing summary, is somewhat misleading in that the times shown reflect, pri-

marily, time spent in actual training activities and do not include time
spent formulating and integrating the orbital timelines. In support of

the surface extravehicular activities, the formulation and integration

activity is executed by a mission scientist and an extravehicular activ-

ity training staff; whereas, the flight planners and the Command Module
Pilot must add these tasks to their normal activities.

9 •2 LAUNCH

In general, the crew workload was easy during launch operations and
the crew was 15 to 20 minutes ahead of the launch count.

The Lunar Module Pilot noted prior to lat_ach that the readings on the

service propulsion system fuel and oxidizer gages were such that they ap-

peared, in combination, to violate the differential pressure limits of the

mission rule for service propulsion system thrusting. Clarification by

the ground indicated that the gage readings reflected an instrumentation
bias.

The S-IC engine ignition and Saturn V lift-off were positively sensed..

Vehicle vibration on the first stage was as reported on previous missions

and is probably best characterized as being similar to a freight train

bouncing on a loose track. In-suit noise levels at maximum dynamic pres-

sure were similar to the Apollo i0 levels recalled by the Commander. Com-

munications were excellent throughout powered flight. Inboard engine cut-

off on the S-IC stage was abrupt and was characterized by approximately

four cycles of the S-If stage unloading. At S-IC outboard engine cutoff,

the major four-cycle unloading of the S-ll stage was again exhibited.

S-IC outboard engine cutoff is the most impressive physiological experi-

ence of the Saturn-V boost phase. During the first 2 to 3 minutes of S-If

engine firing, powered flight was extremely smooth and quiet. After that,

a high-frequency vibration or buzz was sensed which abruptly disappeared

approximately 9 minutes after lift-off. The vibration was also noted dur-

ing S-IVB powered flight. Saturn-V guidance and control of all three
stages, as monitored from crew onboard displays, was normal.

f-
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9.3 EARTH ORBITAL FLIGHT

Post-insertion activities were normal and proceeded at a comfortable

pace. The sights in earth orbit were spectacular; even on the dark side,
where thunderstorms and fires in Africa captured the crew's attention.

The earth-orbit timeline provided sufficient time for viewing the earth,
for unhurried crew adaptation to zero-g, and coping with hardware problems.

The optics covers were jettisoned in the dark. Jettisoning of the
sextant cover could be heard, but there was no audible sound from the

scanning telescope cover. There was some initial concern that the scan-

ning telescope cover had not been jettisoned because of a total absence

of stars in the field-of-view. (The Command Module Pilot had completed

dark adaptation of his right eye. ) Eventually, the constellation Scorpio
came into the field of view and it became apparent that star patterns and

relatively dim stars were going to be quite recognizable. The first clue

that the scanning telescope cover was off, however, came when the S-IVB

auxiliary propulsion system firings became visible in the scanning tele-

scope. S-IVB auxiliary propulsion system firings could be seen through

both the window and the optics at night. Some sensation of spacecraft
motion could be felt from flexing of the space vehicle.

Sometime during the initial portions of earth orbit, the ground ad-

vised that one of the auxiliary propulsion system packages appeared to

have a double helium regulator failure and would be venting through the
relief valve. This raised the possibility of helium exhaustion and the
necessity of using preplanned procedures for control of the S-IVB atti-

tude (non-thrusting) with the service module reaction control system.

A rough check of the body-mounted attitude gyro/gyro display coupler

drift was run and indicated that, with body-mounted attitude gyro 2 sup-

plying rate information, a drift of approximately 6 degrees per hour could
be expected in roll with lesser values in pitch and yaw.

The primary coolant loop evaporator outlet temperature exhibited a

number of excursions. The crew proceeded to execute environmental control

system malfunction procedure number 16 but the results were inconclusive.

Ground assistance was requested after translunar injection, since the evap-
orator was not a mandatory mission item.
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Prior to and during the translunar injection firing, Apollo range in-

strumentation aircraft communications were used very effectively with good

volume and intelligibility. All events occurred on time. The trajectory,
as monitored by the onboard displays, was normal. An unexpected onboard

monitoring surprise was the subjectively greater lag in velocity and alti-

tude computations of the translunar injection initiate/cutoff computer pro-

gram as compared to the command module simulators. This computer program
provides a display of firing time to go during the translunar injection
maneuver. Prior to flight, the crew had been advised that this calcula-

tion was erroneous until late in the firing because of the changing ac-

celeration. They were, nevertheless, surprised at how much the calcula-
tion actually differed from the predicted and actual firing time. The

computation conw_rged in the final 60 to 90 seconds of the firing and ap-
peared to be very accurate at shutdown.

During both the launch phase and the translunar injection firing,
particles were noticed moving in the direction of the spacecraft, and

even passing the spacecraft. They were still in evidence during steady-
state thrusting.

The S-IVB e_ibited the same high-frequency vibration that had been

noted during the earth orbital insertion phase of the S-IVB powered flight.
Both the Commander and the Command Module Pilot thought that the vibration:3

were morepronounced during the final half of the firing and that they in-
creased in amplitude as the powered flight progressed. The increase was

enough to cause some concern that the vibration might effect a premature
S-IVB shutdown.

9.5 TRANSLUNAR FLIGh_I'

9.5.1 Transposition, Docking, and Ejection

The most remarkable feature of the transposition, docking, and ejec-
tion sequence was that the command and service module mission simulator

reproduces these events perfectly. At the completion of the automatic

pitch maneuver, the command and service module was approximately 50 feet

from the lunar module and oriented such that the crewman optical alignment

sight was superimposed on the docking target. The 4-second closure firing
did not provide a positive closure rate so two additional very short fir-
ings (less than 1 second) were made to insure closure. The remainder of

the approach required two small translations down and to the right, and

one attitude correction of approximately 3 degrees in pitch and yaw. The

closure rate was about 0.1 ft/sec at contact. There was no sound or space.-
craft rate to indicate capture; the only indication was the probe talkback
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going to barberpole. The command and service module drifted very slowly,

but positively, off in roll, pitch, and yaw alignment following capture.

Minus-Y and minus-Z translation thrusters were used to realign the two

vehicles prior to probe retraction. The two vehicles were aligned very

closely in pitch and yaw prior to probe retraction; whereas, the roll

alignment was allowed to remain off several degrees. The probe retraction

seemed to be very slow and smooth. The docking latches fired in a slow

ripple sequence. The visibility of the docking target is excellent even

though the data acquisition camera photographs indicate that the target

is immersed in a deep shadow.

Command and service module reaction control system thrusters were not

audible as the command and service module separated from the S-IVB, pitched

around, and translated toward the lunar module. However, as the two ve-
hicles came within about i0 feet of each other, the sound of the command

and service module thrusters impinging on the lunar module became apparent.

This same sound was noted any time a command and service module forward fir-

ing thruster impinged on the lunar module skin while docked, but was never

heard when the two vehicles were separated. Thruster impingement could

he seen as an "oil canning" of the thermal covers. After docking, some
discoloration of the Inconel foil could be observed on the top of the lu-

nar module. Preparations for lunar module ejection proceeded normally.

Docking latch 1O was not fully engaged.

An S-IVB nonpropulsive vent was executed while the vehicles were still
attached. This produced very fine streamlines, light-purple in color,

around the vehicles. The lines, which could be observed by looking down-

sun, appeared to converge at a great distance in an unilluminated spot.

Lunar module ejection was on time and was normal. The maneuver to
the S-IVB observation attitude was also normal with the S-IVB appearing

in the hatch window on schedule. The S-IVB evasive maneuver was observed

visually. There were no visible effluents from the S-IVB and motion could

be detected only by observing its relative motion against the background
of stars and debris.

The television camera was used throughout transposition and docking,

and also to show a most unique view of the earth. The earth was oriented

such that it displayed the entire Western Hemisphere from the North Polar

region to the Yucatan Peninsula with practically no cloud coverage over

the United States (fig. 9-2). While attempting to show the S-IVB evasive

maneuver, the television monitor became inoperative. The monitor showed
a series of horizontal lines similar to lines observed in the command and

service module mission simulator when the grounding circuit was lost (see

sec. 14.3.1). Attempts to adjust the monitor controls and reverification

of all connections produced no improvement in the monitor display; however,

a good picture was still being transmitted. This condition was repeated

during the transearth press conference; otherwise, performance was normal.
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Figure 9-2.- View of the earth during translunar flight.

l_nediately following lunar module extraction, Mission Control re-

quested that the primary coolant loop evaporator inlet temperature valve

be placed in the manual mode to stop an apparent cycling (sec. 14.1.1).
The remainder of the mission was flown with this valve in the manual mode.

f-
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9.5.2 Translunar Coast Problems

One unexpected sight was the extremely high density of small partic-
ulate debris surrounding the S-IVB/lunar module following command and ser-
vice module separation.

Following docking, it became apparent that the paint was shredding
from the lunar module surfaces underneath the docking target in small
pieces (generally less than 1-inch long and 1/4-inch wide). It also be-
came apparent that particles were coming from other areas. (For further

details see section 14.2.1.) These particles surrounded the spacecraft
through undocking in lunar orbit.

At approximately 38 1/4 hours, the Command Module Pilot was using the
optics to view several planets. At the completion of this activity, the
idling program of the computer was selected. At that time, the command
module computer sensed gimbal lock. The command module computer then
coarse-allgned the inertial measurement unit and turned on the lower equip-
ment bay primary navigation, guidance and control system warning light and
the "NO ATT" light on the display keyboard. The platform was subsequently
realigned. The inertial measurement unit orientation was reestablished
through sightlngs on the earth and sun with the computer in option B of
the inertial measurement unit realignment program. A subsequent realign-
ment, using stars, placed the inertial measurement unit back into a known
orientation. Protection against another coarse alignment was provided
through the use of erasable computer program EMP 509. This anomaly is
discussed further in sec. l_.l.3.

At approximately 46 hours, the uplink telemetry capability was lost
(see sec. l_.l.6). Cycling to "command reset" and back to "normal" failed
to resolve the problem. Cycling to "off" for BO seconds and back to
"normal" restored normal system operation.

One chlorine ampule broke during the chlorination attempt on the eve-
ning of the third day (see sec. 14.1.7). A full buffer ampule was added
with no further complications. On several occasions, a small amount of
water was taken from the drink gun following chlorination and no unusual
tastes were observed.

9.5.3 Lunar Module Checkout and Housekeeping

About an hour after informing Houston of the particle problem, the
crew was instructed to enter the lunar module for the first time. The
crew cleared the tunnel, and entered the lunar module at about 8:17, and
powered-up according to the checklist which originally was to have been
accomplished at 55 hours. Telemetry indicated that all the systems were
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in good shape and that no reaction control system or propulsion leak ex-

isted. Powerdown was accomplished within a few minutes and the tunnel
was resealed.

The second ingress, which was for housekeeping and communications

checkout, was accomplished according to the flight plan at about 33 hours.

The lunar module was found to be clean and free of loose particles except

for a washer or small screw or two that occasionally floated by and was

picked up by the crew. The checklists were adequate.

The third ingress into the lunar module was made at about 55 hours

per the checklist. During this entry into the lunar module, the Command

Module Pilot made several discrete observations of the malfunctioning dock.-

ing latch 10. Although the latch was apparently over the lunar module dock-

ing ring, it was not in contact with the ring surface. There was a gap of

approximately 0.010 inch between the latch and the docking ring. The aux-

iliary release knob was depressed and it remained in. The left side of

the latch appeared normal when compared to the other latches. The cam un-

der the power bungee on the right side of the latch did not appear to be
in the same orientation as the other latches. Mission control recommended

that the latch be left alone until undocking.

9.5.4 Guidance and Navigation

One set of cislunar midcourse navigation training sightings was taken

during the early part of the translunar coast for the dual purpose of pro-

viding a measure of the Command Module Pilot's horizon altitude bias and

some practice in executing this computer program. Flying the spacecraft-

fixed line-of-sight to the substellar point seemed more difficult than the
same task in the command and service module mission simulator. The auto-

matic positioning routine placed the line-of-sight very close to the hori-
zon but not on the apparent substellar point. The maximum reticle illu-

mination was too low to allow the lighted portion to be visible against

the earth; whereas, it was required against the dark sky background. The

only satisfactory' technique found for identification of the substellar

point was to identify the reticle above the earth and maneuver the space-
craft until the reticle hashmarks touched the earth's horizon simultane-

ously (fig. 9-3).

There was no problem with the identification of the upper horizon,

perhaps because the sightings had to be delayed several hours, allowing

the spacecraft/earth separation distance to increase significantly beyond

the planned distance. There was only one identifiable horizon on all of

the sightings.
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Figure 9-3.- Sighting through sextant for
cislunar navigation training.

The optics calibration worked smoothly with reproducible results.

An interesting phenomenon observed during these sightings was a very dim

mirror image of the earth reflected in the sky portion of the sextant
field-of-view.

Passive thermal control was entered and executed per the checklist

with excellent results each time.

During a change of the reference stable member matrix (REFSMMAT),

option 1 of the inertial measurement unit realignment program was used

with the coarse-align mode. Only once during the mission did this pro-

vide an alignment of sufficient accuracy to allow auto optics to place
the stars in the sextant field of view. The standard technique used was

to place the spacecraft in stabilization and control system attitude hold,
with a minimnm deadband, and record the shaft and trunnion for each star

selected in the final option 3 platform realignment program. These values

were then used to reacquire the stars in the sextant following the coarse

alignment. This is a very comfortable and rapid technique even when the

telescope is of marginal utility. The one time that the pulse-torque op-

tion was executed was during an off-normal portion of the flight plan and

a spacecraft attitude maneuver was required in order to avoid gimbal lock.
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9.5.5 Midcourse Correction

The only translunar coast mideourse correction was executed at the

second option point. It consisted of a short single-bank firing of the

service propulsion system. The thrust was positive with a definite delay
between the time that the ball valves opened sxld the time that thrusting

was sensed. One surprising feature of the checkout was that gimbal motor
start was not evident on the fuel cell bus, but was quite apparent on the

battery bus. Because of the service propulsion system pressure transducer
shift and the uncertainty associated with the readout, Mission Control re-

quested that the tanks be pressurized by selecting the "manual" position
of the helium valves prior to the firing. This procedure allowed ground

personnel to understand the transducer shift so that they could accurately

update the service propulsion system fuel and oxidizer pressure limits for

subsequent maneuw_rs. The service propulsion system pressure warning light
remained on for the remainder of the mission, since it uses the same ref-

erence as the gaging system.

9.5.6 Scientific Instrument Module Door Jettison
and Boom Deployment

Scientific instrument module door jettison was normal. There was a

very noticeable sound/shock associated with this pyrotechnic event. It

was approximately one-half the magnitude of the spacecraft/lunar module

adapter separation event. A considerable amount of debris was produced.
The door left witlh a high velocity and was tumbling.

Release of tlhe mass spectrometer and gamma-ray spectrometer boom tie-

downs and the X-ray solar monitor door gave a very low-level sound/shock

indication of actuation. Both booms were observed during their first de-

ployment. The outer several feet could be seen from command module win-
dow 5.

9.5.7 Observations Prior to Lunar Orbit Insertion

Just prior to lunar orbit insertion, the crew noticed that there was
almost a half moon in earthshine. The apparent size was such that it was

approximately 2/3 the size of the window when viewed from a distance of
several feet from the window. There was sufficient illumination to show

the larger rayed craters in Oceanus Procellarum and the _ajor features
to the west. The outer rings of Orientale were clearly visible.
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9.6 LUNAR ORBITAL OPERATIONS PRIOR TO DESCENT

9.6.1 Lunar Orbit Insertion and Descent Orbit Insertion

Lunar orbit insertion was executed normally with the exception of
bringing the gimbal motors on the line 20 minutes prior to scheduled ig-

nition. This allowed time to execute the command module computer gimbal
drive check, remove erasable program EMP 509, and recover from any iner-

tial measurement unit-command module computer problem associated with these

events. The service propulsion system fuel and oxidizer pressure trans-

ducers had been analyzed by this time and a new set of maneuver rules in-

corporated. The service propulsion system pressure warning light came on

at ignition and immediately went out. It came back on at the end of the

firing, as predicted. The lunar orbit insertion maneuver was initiated

on bank A and bank B was added approximately 5 seconds later. At the time

bank B was brought on line, there was a small change in chamber pressure

and an attendant sensation of thrust change. The chamber pressure then

increased from 95 psi to about i00 psi at a rate of roughly ! psi/min for

the remainder of the firing. There was no noticeable change in chamber

pressure at propellant tank crossover. The propellant utilization gaging

system was operated in accordance with the preflight plan; however, the

propellant utilization valve was not used. The unbalance indications were

identical to those displayed in the command and service module mission
simulator.

The descent orbit insertion maneuver was executed using the same pro-

cedure adopted for the lunar orbit insertion maneuver.

9.6.2 Landmark Tracking

The first landmark tracked was a training target to the west of the

crater Theopholis. This target was selected to provide practice in land-

mark recognition and tracking speeds under conditions closely approximat-

ing those anticipated for the scheduled tracking of the landing site on

the day of powered descent. This was a very useful exercise and a con-

fidence builder. The next training target was a feature in the landing

area. This target was tracked even though the spacecraft attitude was
not ideal. The landed lunar module was not tracked because of the alter-

ations to the timeline caused by the delay in powered descent initiation
(discussed in sec. 9.6.4).

It is the judgement of the Command Module Pilot that low-altitude

tracking should be used as a vernier adjustment to the predicted location,

and that this technique should not be expected to handle large dispersions

because of the combined problems of target acquisition and sensitivity of
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th_ optics shaft rates to the spacecraft relative roll angles. Tracking
from all altitudes is accurately simulated by the command and service mod-

ule mission simulator. The Command Module Pilot was surprised by the heat
sensed by the eye while viewing the lunar surface.

9.6.!3 Lunar Module Activation and Checkout

The lunar module activation and checkout ill preparation for powered

descent proceeded normally according to the flight plan, with lunar mod-

ule ingress occurring about 40 minutes early. The early ingress allowed

the crew ample time to overcome a possible restraint zipper problem ex-

perienced previously with the Lunar Module Pilot's suit. No problem was

experienced with the Lunar Module Pilot's zipper; however, closing the

Commander's restraint zipper was difficult and caused a delay of about
l0 minutes. Lunar module activation went well. The crew was 20 to 30

minutes ahead of schedule and waiting for acquisition of signal before

proceeding with the S-band antenna checkout, pressurization of the reac-

tion control syst_n, and activation of other systems which ground per-
sonnel desired to monitor.

Activities in the command module in support of lunar module activa-

tion and undocking were normal. The timeline was full, but adequate. The

use of separate c_mmand module and lunar module communications with the

Mission Control Center simplified procedures. Preparations for undocking
were completed only l0 minutes prior to the scheduled time, which is none
tOO soon.

When cocking the latches for undocking, latch l0 required only one

stroke to cock. The force required to cock this latch was significantly
less than that re_ired to cock the first stroke of the other latches.

The S-band checkout went fine until the l_lar module steerable an-

tenna test. At that point, the steerable antenna would not move in the

yaw axis (see sec. 14.2.3). This condition persisted throughout the

flight. Because of the steerable antenna problem, Houston was not able

to uplink a reference stable member matrix (REFSMMAT) or state vector,

so a manual update of the computer was performed. The Commander was pres-

surizing the reaction control system at about the same time. Immediately

upon doing so, reaction control system A indicated a high pressure condi-
tion (sec. 14.2.4). Because of this, some of the reaction control system

propellant in system A was transferred into the ascent tanks to provide

enough ullage vol_ne for the maneuver. The transfer was accomplished by

cycling the ascent stage feeds open and closed while maintaining ascent

tank pressure to less than 180 psi. Except for these two anomalies, the
activation and checkout proceeded well and on schedule through undocking.
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9.6.4 Undocking to Powered Descent Initiation

Following separation, the lunar module was maneuvered so that the

command module could be viewed. The maneuvers were planned to allow pho-

tography of the command module from the Lunar Module Pilot's and Command-

er's windows with 16-ram and 70-ram cameras (fig. 9-4). To improve uplink

communications, the lunar module attitude was changed to point the steer-

able antenna toward earth. This prevented the lunar module crew from view-

Figure 9-4.- Command and service module photographed
from the lunar module.
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ing the landing site; however, a visual sighting had been made on a pre-

vious revolution _id the landing site looked accessible. The checklist

and procedures went according to schedule during the front-side pass after

undocking. The platform was realigned but the optical alignment sighting

was omitted in order to provide additional time to prepare for the cir-

cularization maneuver. This was deemed prudent because of the desire to

be as methodical as possible with the modified procedures used to protect

against a recurrence of the false gimbal lock indication in the computer.

The first two landing radar checks were not acceptable because of an

attitude which pointed the lamding radar at the lunar surface and caused

interference. Later, when in a better attitude, the landing radar check

was acceptable.

Circularization maneuver preparations went well until the service

propulsion system secondary yaw gimbal checks. The secondary yaw gimbal

appeared normal when the motor was Started; however, it exhibited rapidly
diverging oscillations when the position was disturbed by trim settings

(see see. 14.1.10)o The oscillation was confirmed by vehicle dynamics
and the gimbal motor was deactivated. Subsequent tests showed the same

response in all control modes and resulted in the decision to delay the

circularization maneuver. A final change that had been made to the flight
mission rules approximately one week before the flight required that four

servo loops be operative in order to execute this maneuver.

During preflight discussions, the flight controllers and the crew

had agreed that in the event of a "no-go" for powered descent a "brute
force" rendezvous would be executed when the llmar module and command

and service module were at their closest point of approach, approximately
2000 feet. The llnlar module and command and service module crews dis-

cussed execution of the join-up but decided not to expend command and ser_

vice module reaction control system propellant until ground personnel had
an opportunity to assess the situation. The llmar module crew then turned

to the section in the checklist which was the wave-off for powered descent

and configured the systems for normal lunar orbit.

The Command Module Pilot established visual contact with the lunar

module and maintained contact throughout the subsequent revolution until

requested to maneuver to an attitude which provided good high-gain antenna

coverage in order to allow the Mission Control Center to monitor the gim-

hal tests in real time. Two complete gimbal tests were executed for eval-

uation. During the final test it appeared that the gimbal oscillations

became neutrally damped at an amplitude slightly greater than +i degree.

The Mission Control Center requested that a "brute force" rendezvous

be initiated at the next closest point of approach of the two vehicles,

and provided an estimated initiation time. A retrograde service module

reaction control system engine firing near apolune was recommended. At

f
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the time the maneuver was to be executed, the command and service module
was leading the lunar module, and the distance between the vehicles was

slightly greater than 1/2 mile with the distance increasing at a rate of
1 ft/sec as indicated by the lunar module radar. The maneuver was ini-

tiated; however, the Commander was concerned that with the resulting low-
ering of the perilune, the command and service module would not have suf-

ficient translational authority as it approached perilune, and requested
that the closing differential velocity be removed until such time that the
instructions could be clarified. Throughout these events, the lunar mod-
ule rendezvous radar and the VHF ranging were in close agreement.

The crew was requested to continue the "brute force" rendezvous com-
mencing Just prior to perilune, and an initial closing differential veloc-
ity of 5 ft/sec was established. The two vehlcles, which were about 7000
feet apart at that time, commenced closing at about B 1/2 ft/sec, as in-
dicated by the radar. Two more engine firings provided the closing dif-
ferentlal velocity necessary for rendezvous.

The technique employed for the rendezvous was to use the lunar module
rendezvous radar inertial line-of-slght error needles to detect line-of-

sight changes and have the Commander call out ground-controlled-approach-
type directions to the Command Module Pilot to null the llne-of-slght rates
to zero. Range and range-rate information was also provided from the ren-
dezvous radar.

The lunar module tracking light was very effective throughout the
rendezvous and tracking with the crew optical alignment sight verifying
the llne-of-slght control. The lunar module outline was clearly visible
at 1/2 mile in earthshlne. At approximately 500 feet range, the optical
alignment sight was the most accurate tool for close-in line-of-sight
control. Range rates were difficult to assess, even when the vehicles
were close.

Following the ground determination that the yaw gimbal problem was
understood and the mission could safely continue, the command and service
module executed a radially-inward separation maneuver that returned the
two vehicles to the normal relative trajectories for the circularlzatlon
maneuver. Because of a limited time for maneuver preparation, the sepa-
ration maneuver was executed using the service module reaction control
system and three-axis thrusting.

The circularization maneuver was executed. The only alterations to
normal procedures were to start the secondary yaw gimbal motor after the
gimbal tests had been conducted and to execute the maneuver with 90 de-
grees of roll to provide the maximum middle gimbal protection.
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9.7 POWERED DESCENT AND LANDING

9.7.1 Preparations for Lunar Module Powered Descent

As a result ,of the reaction control system regulator leak, lunar mod-

ule maneuvers were performed to keep the reaction control system pressure
in system A from exceeding relief pressures. These maneuvers were con-
ducted on the back side of the moon and consisted of an automatic maneuver

to observe the command and service module, an automatic maneuver to the

powered descent initiation attitude, and frequent yaw pulses (plus and mi-

nus) in order to minimize the orbit perturbations.

Reaction control system engine firings had to be minimized at signal
acquisition to maintain omnidirectional S-band communications with the

Mission Control Center. This apparently resulted in rupture of the burst

disk in reaction control system A, followed by normal venting through the
relief valves.

During three lunar orbit revolutions, one platform realignment was

completed in the :first revolution following the planned circularization

maneuver that was not executed and one realignment was completed during
the revolution prior to powered descent initiation.

The lunar module was given "go" for powered descent about one and

one-half revolutions prior to initiation. Without the S-band steerable

antenna, the S-b_ad omnidirectional antennas had to be used for computer

data up-link. Consequently, the lunar module was yawed 20 degrees right

from the normal powered descent initiation attitude to point the lunar

module omnidirectional antenna toward the earth. It appeared that the

signal strength margins from the S-band omnidirectional antenna were im-

proved, thus allowing the final computer data up-link. The state-vector

update and proce@Ares were transmitted at circularizatlon. At acquisition

of signal, after activating the ascent batteries, a new up-link was re-

ceived from Houston and powered descent was commenced on time. Powered

descent was initiated with the command and service module monitoring VHF
communications until after lunar module touchdown.

9.7.2 Powered Descent Initiation to Landing

According to the Mission Control Center, the powered descent was ini-

tiated at a point 16 000 feet to the south of the original ground track

and at an altitude of 66 000 feet. With these data, the crew expected to

see the lunar mo@_le moving from south to north at pitchover, and expected

to have slightly less than the planned amount of propellant for hover time

near the surface. The lunar module descent propulsion system throttle-up

was smooth and on time. The physiological cues of the descent propulsion
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engine operation were readily apparent; automatic ullage engine thrust at

l0 percent, full throttle-up, and throttle-down to 55 percent were all ev-

ident. An 800-foot downrange correction was entered into the computer 2

minutes after ignition. The altitude and velocity lights which indicate

landing radar lock-on went out in the vicinity of 50 000 feet. Through-

out the descent, the fuel indication remained about 2 percent lower than

the oxidizer indication. At 20 000 feet, based on a premission study which

indicated the possibility of viewing the landing site prior to pitchover,

the Commander put his eye near the normal crewman optical alignment sight
position and he was able to see nearly parallel to the minus-X axis. The

western edge of Stone Mountain and South Ray Crater were clearly visible.

It was apparent from this early view that the lunar module was targeted

nearly perfectly into the landing site elipse. At approximately 14 000

feet, the entire landing site (Flag, Spook and Double Spot Craters) became
visible to the Commander.

Descent propulsion system throttle-down was on time and pitchover oc-

curred at 7200 feet. After pitchover, a comparison of the landing point

designator with the computer and the movement of the vehicle showed that,

if no further trajectory corrections were made, the lunar module would

land approximately 600 meters north and 400 meters west of the center of

the landing elipse. Therefore, between altitudes of 3000 and 4000 feet,

an estimated total of five redesignationslto the south were made. The

vehicle responded properly. At a much lower altitude an estimated five

additional redesignations were made as the lunar module was approaching

Double Spot Craters. It was clear that the vehicle was going to be north

and west of the premisslon-designated landing spot (75 meters north of

Double Spot Craters). However, there was no major attempt to land at the

premission-designated spot, nor had there been any intent to do so prior
to flight because the surface traverse capabilities of the lunar rover

negated the requirement to land precisely at the designated landing spot.

At about 450 feet altitude, the Lunar Module Pilot observed the lunar

module's shadow from his window. At an altitude below 200 feet, as the

Commander yawed the vehicle toward the right, he also noticed the shadow.

Observation of the lunar module shadow allowed the crew to reasonably es-

timate their absolute altitude above the surface and descent rate, and

to make an excellent objective estimate of the size of the craters that

they were seeing on the surface.

The lunar module velocity was decreased rapidly as Double Spot Craters

were passed. The Commander controlled the lunar module with the attitude-

hold control mode at about 250 feet altitude and maintained a very slow

forward velocity. The rate of descent at this time was about ll feet per

second, and this rate was quickly reduced to 5 feet per second. From 200

feet altitude to the surface, the Colander did not look inside the ve-

hicle. Small traces of dust were evident at approximately 80 feet, and



9-19

the dust increased all the way to touchdown; however, the vehicle had lu-
nar contact before the visibility obstruction due to dust prevented the

Commander from seeing craters or small boulders on the surface.

A small crater (15 meters in diameter) had to be cleared prior to

landing. The vehicle was brought to a hover at an altitude of approxi-

mately 20 feet and moved forward and to the right. The rates were then
nulled and the lunar module was landed. At probe contact it was evident
from out-the-window observation that the vehicle was not close to the sur-

face, so the engine stop button was not depressed for approximately i sec-

ond. When the engine stopped, with an estimated rate of descent of 1 1/2

feet per second, there was a sinking sensation when the vehicle settled
an estimated 2 1/2 to 3 feet to the lunar surface. Later, inspection of

the probes showed that the lunar module had contacted the surface with a

slight forward velocity.

In the opinion of the pilots, there is no way to reasonably judge

shallow slopes in the landing area, as the lunar module approaches touch-

down, except in the craters where shadows are visible. Inspection of the

region during ext_avehicular activity indicated that, had the lunar mod-
ule landed 25 meters in any direction from the actual site, it could have

been on a local slope of 6 to i0 degrees. The attitude of the vehicle
after touchdown was essentially zero roll, 2 i/2 degrees pitch up, with

a slight yaw to the south. The lunar landing training vehicle was con-
sidered excellent training for this mission phase because its dynamic re-

sponse is identical to that of the lunar module.

The only area in the nominal sequence which might be improved during
the command and service module activities is that a 30-minute period should

be scheduled following landing of the lunar module to allow the Command

Module Pilot to restow the command module prior to becoming engrossed in

the solo timeline.

9.8 LUNAR SURFACE OPERATIONS

9.8.1 Postlanding Activity

Immediately following touchdown, the crew went through the abbrevi-

ated powerdown to conserve power (a change from Apollo 15). The power-
down circuit breaker configuration was the same as the surface extrave-

hicular activity circuit breaker configuration except the a-c bus, the
S-band antenna, and the guidance computer circuit breakers were pulled.

Because of the powerdown of the a-c bus and the guidance computer, emer-

gency no-communication lift-off block times (given in ground elapsed time)

became meaningless because, with the mission timer disabled, the crew had

no ground elapsed time reference. If this maximum powerdown configuration

/f
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is used on future missions, emergency no-communication lift-off time should

be given in central standard time for use with the crew wristwatches. The

lack of a mission timer was inconsequential to the remainder of the lunar

stay activities because the Mission Control Center provided timeline in-

formation during extravehicular activity preparations and post-extravehic-

ular periods. For the first time, the inertial measurement unit was

coarse-aligned to gimbal lock to eliminate gyro drift and pulse-integrat-

ing-pendulous-accelerometer bias upon powerup, which had caused problems
on previous missions. The crew estimated that they were 20 minutes ahead

of the timeline at the completion of the powerdown.

After powerdown, the suits were doffed and lubricated. The Lunar Mod-

ule crew then ate their first meal on the lunar surface and reconfigured

the cabin for sleep since they had been directed to postpone the first ex-

travehicular activity until after a sleep period. Changes were made to

the original plan in real time as the revised procedures were transmitted

by the Mission Control Center. When the cabin gas return valve was placed

in the "automatic" position, there was a chattering sound and the cabin

gas flow was very low and was intermittent (see. 14.2.5). The cabin gas

return valve was then placed in the "open" position and the flow became

normal. In preparation for the first extravehicular activity, the tool

carrier fell off the portable life support system (sec. 14.3.11).

9.8.2 Extravehicular Activity

First extravehicular activity.- Following the first sleep period and
normal preparation for surface activities, the Commander egressed slightly

ahead of schedule. Because of the steerable antenna failure, there was no

television coverage of the Commander stepping onto the lunar surface. De-

ployment of the modular equipment stowage assembly by the Commander was

normal and, after its deployment, the Lunar Module Pilot egressed. The

modular equipment stowage assembly was slightly lower than the crew had

been used to in training; however, after a few moments of manipulating

the straps, the assembly was adjusted to the proper height.

The lunar module had been landed on the inner flank of a subdued cra-

ter. The almost level attitude of the lunar module made operating around

the vehicle much like that of the training environment. The crew felt very

familiar with the lunar surface environment. Consequently, the familiar-

ization period for lunar surface operations is not necessary.

The lunar module thermal panels, which had exhibited a shredded-wheat

like appearance, and the S-band steerable antenna were inspected.

The minus-Y strut and the descent engine bell were both next to, al-

though well clear of, small boulders. There was no apparent landing gear

stroking.
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The rover was examined and the walking hinges had to be reset prior

to deployment. Upon pulling the rover release handle, the vehicle de-

ployed to the proper position. Normal deployment was obtained by pulling

the tapes ; however, three of the wheels had to be locked into place and

the hinge pins that locked the chassis were protruding slightly in two

locations. The pins were placed in the locked position with the conting-

ency tool. The rear steering was inoperative during rover powerup, but

instructions were received to continue with the vehicle loading. Loading

the quad-3 pallet tools on the rover was easy; the only problem associated

with the tool load-up was that a cable strap ho_lding one of the penetrom-
eter pins in place pulled free (sec. 14.4.11).

The ultraviolet camera/spectroscope was extremely easy to remove from

stowage on the quad-3 pallet. Transporting the camera to the observing

site was much easier than had been anticipated from l-g training. The cam_
era was emplaced according to the cuff checklist diagram.

The Apollo it_aar surface experiments subpackages were off-loaded by
the Lunar Module Pilot and placed together. The T-handles for removal of

the subpackages were not used, nor would they be required in the I/6-g

environment for abnormally high or low positioning of the descent stage

on the lunar surface. No difficulty was encountered in any of the opera-
tions with the scientific experiments package at the lunar module.

Subpackage 2 was laid flat on the surface so that the radioisotope

thermoelectric generator could be serviced. The subpackage was then re-

oriented in order to provide the Lunar Module Pilot a clear access path

to the radioisotope thermoelectric generator housing. The reorientation

may have forced dust into the locking collar which, later, could have pre-

vented the Lunar Module Pilot from making a positive lock-on to the carry-
ing bar. The radioisotope thermoelectric generator was fueled and then

the hike to the Apollo lunar surface experiments package deployment site

was begun. About half-way out, subpackage 2 separated from the bar and

fell to the lunar surface. The subpackage was examined and, when no dam-

age was found, it was reconnected to the bar and carried to the deployment
site.

Because preflight data had indicated the l_uding area would be hum-

mocky and blocky, a suitable Apollo lunar surface experiments package de-
ployment site was to have been selected by the Commander using the lunar

roving vehicle to explore 100 meters in front of the lunar module. How-

ever, the Commander became involved in a retake of earth imagery photog-

raphy using the far ultraviolet camera/spectroscope, so it was necessary

for the Lunar Module Pilot to carry the Apollo lunar surface experiments
package to the best possible site that he could select on foot. The site
chosen was about lO0 to 150 meters southwest of the lunar module and was

typical of the region. Exploration with the lt_lar roving vehicle would

probably not have resulted in the selection of a significantly better
site.
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The deployment of the experiments was normal with the following
exceptions :

a. Installation of the radioisotope thermoelectric generator power
cable connector to the central station was more difficult than it had

been in training.

b. The passive seismic experiment had to be emplaced on the side of

a small subdued crater which made leveling difficult. When the shield

(with its sun indicator) was removed, proper orientation did not point the
passive seismic experiment directly downsun, which surprised the Commander.

c. The heat flow experiment cable was inadvertently broken when it

became entangled with the Commander's legs as he was working near the cen-
tral station. (See section 14.4.1 for details.) The Commander did not

know that the cable had broken because pressure suit mobility is restric-

tive and a crewman cannot normally see his lower legs or feet. It is well

known that the Apollo lunar surface experiments package cables have memory
and stand off the surface in the i/6-gravity environment. This condition

requires a crewman to jump clear of cables which he cannot adequately see.

In order to insure that cables are not inadvertently broken by a crewman,
cables must be designed with strain relief.

The drilling for the first heat flow experiment probe was normal.

The hole for the second probe was not drilled because of the broken cable.

The drill seemed to "auger in" to the depth required for the first two

sections, but some back pressure on the drill was required for the remain-

ing sections. The deep core was removed using the extraction tool pro-

vided for that purpose and it was of great benefit. The core was placed

on the back of the rover, separated into two sections, and placed on the

tripod at the experiments package site for retrieval at the end of the
extravehicular activity.

The lunar surface magnetometer was located within about 2 meters of

a small embedded block on the surface. Lunar surface magnetometer level-

ing required more time than had been anticipated because of a small slope
in the locality of the instrument.

Prior to deploying the experiments around the central station, the
Commander used the rover to select a traverse route for the active seis-

mic experiment. The lunar roving vehicle was driven out i00 meters on a

heading of 290 degrees to both explore for the best route for laying out

the 100-meter geophone cable and also to insure that it was laid in a

straight line. Upon the second rover powerup, the rear steering was found

to be operative. Thereafter, the front and rear steering mode was used

throughout the remainder of the lunar surface activities. The geophone

cable was accurately deployed on a heading of 290 degrees which was not



9-23

directly down the sun line. Subsequent photography shows that the cable

diverges, at most, 1/3 meter from a straight line in the 100-meter length
of the cable. The initial extension of the first several meters of the

power and geophone cables produced a high rotational release force on the

spindles which moved the central station so that it had to be realigned.

The terrain over which the active seismic experiment cable was deployed

was both hummocky and blocky. There was at least one 6-meter-diameter

subdued crater between the second and third geophone stations and numerous

blocks in the vicinity of the third geophone station. Active seismic ex-

periment geophone thumper firings were normal except that, at the fourth

geophone station, because of a crew procedural error, the initial attempt

at firing the thumper was unsuccessful. Emplacement of the mortar pack-

age base was delayed when one of the four legs of the mortar package base

could not be deployed (sec. 14.4.2). The base was emplaced with three

legs at their full: extent, and it was level. The mortar firing package

level bubble was free from its ring.

While the Co_ander was engaged with the active seismic experiment,

the Lunar Module Pilot was taking photographs of the emplaced experiments.

He noted that a small amount of lunar soil had been deposited on the ther-

mal curtain of the passive seismic experiment. Once the active seismic

experiment was completed and some sampling had been accomplished in the

area, the rover was loaded up with the equipment needed for the geological

traverse to Flag Crater.

In driving to Flag Crater, the terrain was similar to that in the

vicinity of the lunar module - hilly and hummocky, with 1-meter-size or
smaller blocks that ranged in density from about 50 percent to i0 percent

of the surface area. Flag Crater was found with no problems. The check-

list activities at Flag Crater were accomplished on time and the rover

was driven back along the outgoing tracks to Spook and Bu_ter Craters

where sampling was accomplished according to the checklist and a lunar

portable magnetometer measurement was taken. Lunar portable magnetometer

deployment was identical to the l-g training deployments. The magnetom-

eter stowage cable deployment pull force was very much the same as had

been noted on the preflight backup unit during the delta crew compartment

fit and function checks at Cape Kennedy. The only difference was that

the cable deploy forces increased with each deployment.

A good radial sample was taken at Buster which is a rocky-rimmed cra-
ter that has boulders of 2 to 3 meters in size in the bottom and up the

northeast and southwest flanks. Station 3 of the first traverse was back

at the Apollo lunar surface experiments package site for the lunar roving
vehicle Grand Prix. This was accomplished in about 2-1/2 minutes. Through-

out the entire extravehicular activity, the extravehicular mobility unit

performed beautifully, and all other equipment performed as advertised.
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Second extravehicular activity.- Cabin depressurization and egress

were normal. The rover load-up procedures were adequate and no difficulty

was experienced except with the sample container bags and the method of

attachment of the bags onto the portable life support system tool harness

(sec. 14.4.8). During each attempt, it was very difficult to attach the

bottom Velcro strap to the portable life support system tool harness. A

more efficient means should be devised whereby the bags could be positiv-

ely retained on the tool harness.

With load-up accomplished, the crew drove the rover to an area on

Stone Mountain. The long traverse had been mapped to extend over the

Cayley Plain, across the contact of the Cayley and Descartes formations,

and up the Descartes formation to the Cinco Craters. The traverse route

was toward the south and it crossed ridges trending in an east-west di-

rection and having large topographic relief, on the order of l0 meters.

The ridges were covered with craters ranging in size from as small as

1 meter up to about 30 meters in diameter; also, many secondary craters
were noted along the route. Approaching the face of Stone Mountain, the

block frequency varied from ridge to ridge. During the traverse, some

areas were crossed that had block coverage as low as l0 percent. The

blocks were angular to subangular and up to a meter in diameter with a

few isolated ones as large as 3 meters. The predominant size was about
20 centimeters in diameter. Some of the areas had as much as 40 to 50

percent block coverage. The rover's suspension system handled this type

of terrain adequately and the crew felt quite at home travelling through
this area.

Survey ridge was a predominant feature that was in view each time a

ridge was topped enroute to Stone Mountain. Cinco Craters, and well be-

yond, could be seen quite clearly throughout the traverse. The general

impression gained was that Soutl_ Ray eJecta was definitely being crossed

where the rays thickened and thinned from ridge to ridge. Nowhere did the

crew feel that they were completely out of the rays. At Survey Ridge, a

more southwesterly heading was taken. The traverse down Survey Ridge was

easy at a speed of 7 or 8 kilometers per hour and after clearing the ridge

the rover was again turned to a southerly heading for the climb up Stone

Mountain. At that point, a series of secondary craters which were 5 me-

ters or so in diameter made trafficability a little more difficult, but

not impossible.

Once started up Stone Mountain, the crew had no feel for the steep-

ness of the slope while going uphill. Upon reaching the area of station
4 (in the Cinco Craters area) and turning the rover back downhill to find

a parking place, the actual severity of the slope became apparent. The

rover pitch meter indicated slopes up to 20 degrees. The traverse up

Stone Mountain again crossed some very sharp craters which appeared to be

secondaries. The stop at station 4 was made on time, all activities were
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Figure 9-8.- View of Smoky Mountain from station 9.

The tasks were accomplished at station i0 as outlined except for dig-
ging the soil mechanics trench, which had been deleted. The rover tracks

were examined as a part of the soil mechanics experiment, and the penetra-
tion or compression of the regolith was not as much as from the crew's

footprints. The penetrometer activity with the 0.2- and 0.5-inch diameter
cones went well at stations 4 and 10.

The extravehicular activity closeout equipment transfer and ingress

into the lunar module were normal. The sample container bags, sample re-

turn containers, and the pallets were easily handcarried while ascending

to the ascent stage. The lunar equipment conveyor was used by the Com-
mander to load the equipment transfer hag when the Lunar Module Pilot was

inside the vehicle. Repressurization was normal.

Third extravehicular activity.- Load-up of the lunar roving vehicle

proceeded on schedule. The Lunar Module Pilot noticed that his watch

crystal had apparently fallen out before leavin_ the lunar module and

shortly thereafter the movement stopped (see sec. 14.3.12). After having

driven less than i00 meters from the lunar module, a 10-meter ridge was

/
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climbed which might have been the rim of an old, subdued crater. Shortly

thereafter, the block frequency from the South Ray ejecta declined dras-

tically such that, by the time Palmetto Crater was reached, the block

frequency in the regolith was on the order of 1 percent or less. There

were some blocky rim craters near Palmetto and, in one instance, there
was a block sticking through the regolith about half-way down the inner

side of Palmetto. The traverse proceeded as planned past Palmetto Crater,

and on past End and Dot Craters to the objective, the rim of North Ray

Crater where stops were to be made at combined stations ll and 12.

Throughout the previous extravehicular activities, the 16_mm camera

had apparently performed flawlessly. During this extravehicular activity,
the camera was started at about Palmetto Crater and it appeared to be

working normally. Also, during the previous extravehicular activities,

the Lunar Module Pilot attempted to provide traverse review film for the

geologists of the areas in which television coverage could not be obtained
because of rover motion.

End Crater was a blocky-rimmed crater, and appeared to be blocky as

a fairly fresh impact crater would be. The most striking part of the tra-
verse was the lack of the cobble-size debris and the pronounced subdued

nature of the craters which were 1 to 5 meters in diameter. It was al-

most like driving across a craterless area in that the lunar rover hardly

responded to these subdued craters. The depth-to-width ratio of these
craters was felt to be much shallower for their size than any previously

seen. It was much like driving across sand dunes with only very minor

undulations due to old craters. Having passed Palmetto Crater, and de-

scending off an east-west ridge into a broad valley that was, perhaps, 200

to 300 meters wide, the going was quite smooth and maximum speed for the
rover was obtained on level terrain. The terrain, trending mostly to the

northwest, then sloped up toward North Ray Crater. This area was almost

crater-free; however, there were scattered isolated blocks to 5 meters in
diameter. One of these was selected for a radial sampling on the return

traverse and became known as "Shadow Rock" at station 13 (fig. 4-10). At

about this point, a swale between Smoky Mountain and the rim of North Ray
Crater was seen. This area had one of the greatest concentrations of large

blocks seen during the traverse. Unfortunately, it was out of the traverse

area and could not be sampled. The blocks were grayish-black in color with

the exception of one large pure-white block, which was at least 5 meters
across. This rock was very angular and, unfortunately, was not visible

from any of the stops that required 500-mm photography. The boulder debris
radials from North Ray Crater were evident up the side of Smoky Mountain

and toward Ravine Crater.

The North Ray area was composed of two predominant rock types: a
breccia of white matrix origin with black clasts, and a black-matrix rock

with white clasts. Also, some of the largest clasts that occurred in the
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The last stop was in the vicinity of the lunar module, northwest of
the Apollo lunar surface experiment package site. Some crystalline rocks

with a sugary texture were collected as well as some breccias. A final

lunar portable magnetometer reading was made to the east of the lunar mod-
ule where the rover was parked for ascent television. This reading was

not as had been e_cpected preflight ; in fact, all of the lunar portable

magnetometer readings were some of the highest lunar surface readings

seen. (The readings are given in sec. 4.7.) A crystalline rock was lo-

cated and placed on top of the lunar portable magnetometer for the final

reading. This rock was bagged and returned in one of the sample collec-

tion bags.

Closeout was performed on schedule and repressurization of the lunar

module was as expected. Equipment jettision was performed on schedule

after a short delay due to an overabundance of rocks. However, no rocks

had to be jettisoned and all the samples that were collected were returned.

Far ultraviolet camera/spectroscope problems .- The camera had to be
moved twice to keep it out of the sun. It was moved on the second extra-

vehicular activity because the sun was across the bottom half of the spec-

troscope imagery box; it was moved on the third extravehicular activity
because the sun was across the first upper 4 centimeters of the cassette
handle.

Initially, the camera was difficult to align in azimuth (sec. 14.4.9)

and it became increasingly difficult to move each time a change was re-

quired. Setting the azimuth on the third extravehicular activity moved
the camera off level because of the torque force required. In several

realignments, it "was impossible to move the leveling bubble to the center

of the ring because of the geometry of the three camera legs on the slopes
and the time available for releveling.

The battery cable lines did not lay flat and continually tangled up

in the Commander's legs almost every time he approached the camera. For-

tunately, the battery moved rather than the camera.

The crew had received training with the qualification ultraviolet
camera a week before launch and had discovered that camera mode changes

produced noise on the VHF radio. There was no other apparent electro-

magnetic interference resulting from the power supply operation.

Cosmic _ray detector experiment problems.- When the Commander pulled
the red-ring lanyard to shift the shade in panel 4, the shade moved only
about one-fourth of the desired distance and the lanyard broke (see sec.

14.4.4). Upon examination of the cosmic ray experiment at the completion

of the first extravehicular activity, the temperature labels were off-

scale high; therefore, the experiment was moved to the minus-Y landing
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gear strut footpad. At the end of the third extravehicular activity, the
cosmic ray experiment panels were hung up inside the frame. It was nec-
essary to use a pair of pliers tO _et sufficient grip on the experiment
panels to break them free for sto_age_

9.8.3 Cabin Activity

Sleep.- The crew slept exceptionally well although the cabin tempera-
ture varied. The ear plugs were not used; it was felt that they were un-
necessary. For the first sleep period on the lunar surface, the Commander
donned only his sleeping bag, whereas the Lunar Module Pilot wore his
liquid cooled garment while in his sleeping bag. For the second and third
sleep periods, both crewmen wore thelr liquld cooled garments while in the
sleeping bags. The intravehicular garments were never used. There was
some light leakage into the cockpit ; however, it did not prevent the crew
from sleeping. The Lunar Module Pilot aided his first sleep period by
taking Seconal; however, he was awakened three times - the first two times

by master alarms caused by the reaction control system A problem, and the
third time by an apparent 19ss of communications lock during a handover
which produced noise in his earphones. The first sleep period lasted about
8 hours. In general, the cabin configuration is acceptable to get a good
night 's sleep.

Extravehicular preparations and post-extravehicular activity.- The
part of the timeline preceding the first extravehicular activity went
normally even though the crew had to re_Tite the first extravehicular ac-
tivity section of the procedures in real time. The crew experienced no
problems throughout any of the periods preceding and following extrave-
hicular activitl_s except for a communication carrier microphone problem.
Prior to the first extravehicular activity, orange Juice had leaked into
the Lunar Module Pilot's communication carrier and the Lunar Module Pilot
could employ voice communications only after he had blown out his left
communication carrier microphone boom and refastened the right microphone
boom tip (see sec. 14.3.5). The communication carrier is a single point
failure for the lunar surface operation; another one should be carried
as a spare.

Portable llfe support system recharges were normal. Good recharges
were accomplished after both the first and second extravehicular activi-
ties. The only troublesome problem occurred during suit donning. Ex-
treme difficulty was encountered in closing the restraint zippers on both
the Commander's and Lunar Module Pilot's full pressure suits. A restraint
zipper closure aid is needed to eliminate the high probability of being
unable to close the restraint zipper. The prescribed lubrication proce-
dures were used to keep the pressure sealing zipper freely operable and
to lubricate the 0-rings and all connectors. The pressure sealing zipper
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was adequately lubricated as it would close smoothly during each suit

donning. The best time to lubricate the press_2e-sealing zipper was af-

ter doffing the suit because the suit stands erect in 1/6-g, greatly im-

proving zipper access. The crew ran out of suit lubrication during the

preparation for the third extravehicular activity. The required equip-

ment was Jettisoned without difficulty at the end of the third extrave-

hicular activity.

The major concern with housekeeping, on post-extravehicular doffing

of the pressure g_rment assemblies, was dust in the cabin. A Jettison

bag was placed over both legs of the suit and the suits were laid on the
engine cover as prescribed. There was a considerable amount of dust on

the suits around tlhe neck, around the helmet, on top of the oxygen purge

system, and on the back of the portable life s_pport system. Most of

this dust ended up on the floor of the lunar module. The dusty floor was

cleaned by wetting a rag, caking the dust into mud, and picking it up in

the rag_ however, there was no way to remove the dust from the Velcro on
the floor. Since the Velcro does not restrain the crew to the floor in

zero gravity, it is not needed.

Because of the dust problem, the lower limbs of the liquid-cooled

garments were dirty. Each crewman had to help the other crewman remove

his suit. Consequently, there was appreciable dust on each crewman's

hands and up to the elbows of the liquid-cooled garments. There is no

way to avoid this problem; the crewmen's hands could not be cleaned while

on the lunar surface after the first extravehicular activity.

The dust was always a major cause of concern in that the crew never

knew when dust might get into some equipment and compromise the lunar mod-

ule or extravehicular mobility unit environmental control systems. A pro-

gram to improve housekeeping procedures must be actively _pttrsusd to re-

duce the amount of dust in the spacecraft as r_pidly and as simply as

possible.

On each occasion that the drink bag was installed into the suit, the

crew encountered leakage due to interference between the drink bag nozzle

and the left microphone boom. In the case of the Lunar Module Pilot, this

interference resulted in an estimated 4 to 5 ounces of orange Juice leak-

ing on his helmet, his face, and the pressure suit neck ring. After the

second extravehicular activity, the effect of leaking orange Juice on the

neck rings of both crewmen caused both pressure suit helmets to be prac-

tically impossible to remove. It was necessary to thoroughly clean the

helmet neck ring with water to remove the orange Juice. The drink bags

carried in the suit are a necessity to provide the crew with liquid while

they are working 7 to 8 hours on the lunar surface, but the bags must not
leak.
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The crew had a continual problem of donning and doffing the gloves

because there was dust in the wrist ring pull connectors (see sec. 14.3.4).

Even though the connectors were blown out repeatedly and appeared to be

free of dust, it was extremely hard to pull the wrist ring devices in or

out and, in fact, rotate the glove on or off. Some type of wrist dirt

seal over these connectors is necessary.

The crew used liquid-cooled-garment pump cooling repeatedly. This

type of cooling has a very quick heat removal capability. Donning and
doffing the full pressure suit produces the highest heat workload in in-

travehicular activity. If the crew has just completed donning the pres-

sure suit, air cooling will allow body core temperatures to rise because

it cannot remove the heat, but a quick shot of cold water in the liquid-

cooled garment immediately removes this heat and will minimize the amount

of perspiration that the crew gives off while they are operating on the

air-cooled system. In addition, the use of water cooling during the ex-

travehicular preparation allows the crew to stow the air hoses away from

the front of the suits to minimize the interference of the bulky and dif-

ficult-to-handle suit connectors. The use of water cooling alone allows

the crew to maintain cooling on both crewmen until Just before their final

pressure suit integrity check. The crew believes that this serious at-

tempt to minimize heat-up of body core temperature and remove perspiration

during the long-term wearing of the pressure garment assembly was a major
factor in their physical well-being during the lunar module operations.

A continuous problem throughout the extravehicular activity prepara-

tions was the portable life support system tool harnesses. Whenever the

harness straps caught on the numerous fittings in the lunar module, the

harness would fall off (see sec. 14.B.11). During the first extravehic-

ular activity preparation, both crewmen had completely donned their suits

and backpacks and were in the portable life support system oxygen-supplied

heat-up mode when the Lunar Module Pilot's tool harness pulled loose. It

was extremely difficult for the crewman to put the tool harness back in

place because of the volume limitations due to the fully suited crewmen
and the cooling limitations at the time.

9.8.4 Extravehicular Equipment

Extravehicular mobility unit.- The mobility of the extravehicular

pressure garment assembly with the portable life support system unit at-
tached was exceptional. The crew had discovered in 1/6-g aircraft train-

ing that they could pick up rocks from the lunar surface and perform major

bending operations which were necessary to deploy and load the lunar rov-

ing vehicle as well as deploy every experiment. The dynamics experienced

in the 1/6-g flights were applicable to the conditions encountered on the

lunar surface, including the surface footing.
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The cooling performance of the portable life support system was such
that the Commander's maximum diverter valve position was half-way between

the "minimum" and "intermediate" cooling positions, even on the third ex-

travehicular activity. During the driving portion of the extravehicular

activities, both crewmen used the "minimum" position except on the third

extravehicular activity when the Commander's valve stayed in the afore-

mentioned position.

The extravehicular mobility unit visors provided excellent protection

from the stun and shielding during the S-band lunar communications relay

unit antenna alignment. On the third extravehicular activity, the Com-

mander's extravehicular mobility unit overvisor would not retract; this
was due to dust that had accumulated on the helmet as a result of the loss

of a rear fender from the lunar roving vehicle.

On the first extravehicular activity, the Commander's purge valve

pin pulled loose three times (see sec. 14.3.10). This was probably caused

by the seat belt pulling over the pin. Downward visibility restriction

prevented the exact determination of what was causing the purge valve pin

to be pulled. For the second and third extravehicular activities, the

purge valve was reversed so that the pull pin was not in contact with the

lower part of the seat belt.

The Lunar Module Pilot had intended to use the food bar but, because

of his leaking drink bag, did not get a chance to try it. The drink bag
on the Commander's suit was installed after the suit was donned for the

first extravehicular activity; this resulted in an installation in which

the Velcro was not properly mated so that the drink bag nozzle pulled

free. Therefore, the Commander was unable to drink during the first ex-

travehicular activity on the lunar surface.

The crew was rushed at ingress when concluding the first extravehic-

ular activity because the Lunar Module Pilot's portable life support sys-
tem was almost out of Water. The extravehicular communications system an-

tennas were not placed in the stowed position and the Commander's antenna

was broken upon ingress (see sec. 14.3.2). Crews should consider leaving

the antennas stowed except when they may have to walk back to the lunar

module from a disabled rover, or when using the lunar module communica-

tions at extended ranges.

Because of extensive dust coverage, the Commander's remote control

unit was difficult to read. An attempt was made on the surface to dust it

off with a glove _id the abrasive dust badly scratched the remote control
unit face. After the remote control unit oxygen gage was scratched, it

was impossible to read oxygen quantity on the lunar surface and it could

be read only marginally inside the lunar module. A scratch resistant ma-
terial should be used to cover the remote control unit face.
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The ability to reach the extravehicular mobility unit controls varied
on each extravehicular activity. Both crewmen were sometimes unable to

reach their primary oxygen and water valve shutoffs; however, they were
always able to reach their cooling and auxiliary water valves.

Making left turns in the rover and performing certain overhead oper-
ations, such as unstowing the quad-3 tool pallets and the far ultraviolet

camera, caused the Commander's right wrist ring to cut the skin. The Com-

mander used a Lunar Module Pilot's wristlet during the second and third
extravehicular activities to protect the wrist.

Because of the loss of the rear fender, both of the extravehicular

mobility units, (the oxygen purge system, the top and sides of the suit,
and the front of the connectors) were covered with small dust clots. The

only method discovered to satisfactorily remove the dust from the pressure

suits was to beat the appendages of the suit against a surface area such

as the lunar roving vehicle tool pallet, the lunar module landing gear
struts, or the lunar module ladder. Dusting with the brush caused a coated

layer of dust. Therefore, dusting with the dust brush should be the last

resort in cleaning the suits.

The extravehicular maneuvering unit gloves were very fatiguing on the

long 7-hour extravehicular activities. When an object is held in the pres-

sure suit glove, a crewman must continually hold pressure on the object to

prevent dropping it. In a short period of time, the fingers become so tired

that they are aching. The hands cannot successfully be required to apply

continual pressure to grasp, hold, or manipulate objects on a long-term ba-
sis, and no amount of preflight exercise will condition them to do so. For

long-duration operations in space the finger joints must have stability in

the same manner that the leg or elbow convolutes maintain stability.

The sample collection bag attachment to the tool harness was unsatis-

factory. On one occasion, one half-full bag of rocks fell off the tool

harness and, fortunately, lodged between the rear fender and the frame of

the lunar roving vehicle. Because the Velcro is subject to clogging with

dust, the manner in which it is used to attach the bags to the portable

life support system tool harness will not assure positive retention of the

sample collection bags on the portable life support system tool harness.
This is discussed further in section 14.4.8.

The numerous equipment problems that the crew encountered in real

time (the sample collection bag falling from the portable life support

system tool harness, documented sample bags falling off the cameras, fail-
ure of the gnomon, and failure of the retractable tether) were detriments

to crew performance. In every instance, these problems were resolved in

real time by using a normal earth-like method of carrying the sample col-

lection bags and the documented sample bags, using tools in place of the
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gnomon scale, and carrying the tongs by hand. Normal earth-like proce-
dures for lunar sD_face sampling operations are needed to reduce crew

training and equipment malfunctions.

Lunar rovin6 vehicle.- Manual vehicle deployment was readily accomp-

lished. The crew had to reset both sets of walking hinges, extend three

of the four wheels manually, and insert two of the four outboard hinge
pins. The forces required to insert the hinge pins were as expected from

preflight training,.

At initial powerup of the vehicle, the rear steering was inoperative.

However, the next time the vehicle was driven, both front and rear steer-

ing was operative. The crew has no opinions on what caused the inopera-

tive rear steering on first powerup. Mounting and dismounting of the ro-

ver was comparable to the 1/6-g training operations in the KC-135 aircraft.

At times, the Lunar Module Pilot's portable life support system would

hang up on the rubber bumper in the rear of the seat, requiring him to
bend forward and slide back into the seat. The Commander had some diffi-

culty because of the tightness of his seat belt in that a major effort was

needed to push do_ the handle for seat belt fastening. Nevertheless, the

seat belt adjustments made with the seat inserts on the lunar roving ve-

hicle at the Kennedy Space Center mission simulation required no readjust-
ment on the lunar surface for both the Commander and Lunar Module Pilot.

The crew noted a higher than expected temperature on battery 2 which

resulted in a power reconfiguration to allow battery 2 cool-down. An off-

scale low temperature reading was noted at the completion of the traverse
on the third extravehicular activity.

Performance of the lunar roving vehicle was good. The terrain when

driving to station 1 on the first extravehicular activity was blocky and

hummocky with many subdued-rim craters. Visibility was poor while driving

to station 1 in the zero-phase direction. It was impossible to see far

enough ahead to drive at maximum speed. Speed on the outbound leg prob-
ably averaged less that 5 kilometers per hour. Slopes up to 7 or 8 de-

grees were negotiated. The visibility effect of zero-phase, in some cases,
caused the rover to bounce through subdued craters (2- to 3-meters in diam-
eter) that could not be seen.

The vehicle had no tendency to break out at slow speeds and control

was excellent. On the return from station i to station 2, the rover tracks

were used as directional aids, and tacking out of the sun line allowed an

increase in speed to approximately i0 kilometers per hour. At this speed,

there was a tendency for the rear wheels to break out during sharp turns.
Control was easily regained by turning into the breakout direction. Little

wheel slippage was noticed. Rooster tails were noticed when the front and

back wheels were driving, as shown in figure 9-10.
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Figure 9-10.- Commander driving lunar roving vehicle during "Grand Prix".

The Survey Ridge region traversed during the second extravehicular

activity was so blocky and highly cratered that it was necessary to drive

through the smaller secondary craters in order to avoid the larger steep-

walled secondary craters. The vehicle ran in and out of the smaller sec-
ondaries with ease and it was in this region that the crew experienced the

first of three boulder scrapes on the underside of the vehicle frame. The

suspension dynamics as the vehicle bounced out of a secondary crater re-
sulted in the rover scraping a boulder which it normally would have cleared.
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The vehicle climbed very steep slopes going up Stone Mountain. In

several instances, the pitch needle was pegged at 20 degrees, although

the face of the pitch gage fell off as the crew departed Survey Ridge

(see. 14.6.4). Z_e only way the crew was able to judge upslope vehicle
movement in the lunar environment was by the reduction in the speed of

the vehicle as it climbed the slope. The best way to negotiate slopes

in the rover is to go straight up and straight down. Going cross-slope

or parallel to contour lines produces right or left rolls of i0 to 15 de-

grees. The feeling is very uncomfortable, even though the vehicle was
never unstable d_ing cross-slope driving. At station 4, the lunar rov-

ing vehicle was parked in a flat bottom crater in order to eliminate the

possibility that the vehicle would roll down the hill.

The right rear fender was lost at statior, 8. Subsequently, the right

rear wheel produced a shower of dust over the vehicle which appears in the

16-mm motion picture photography as falling snow. However, a great deal

more dust was actually produced by the wheel than shows up in the film.
The crew and the fTont of the vehicle, psrticttlarly the instrument panels,

were covered with dust. The instrument panel and the start, stop, and

closeout decals had 1/4 inch of dust over them at the completion of the

third extravehic1_lar activity.

Driving north of Palmetto Crater on the third extravehicular activ-

ity, it was poss_'ble to leave the throttle at a maximum setting to achieve

speeds of i0 to 12 kilometers per hour while continuing on a straight

course. One turn at this speed produced a rear-wheel breakout of approx-

imately 60 degrees. This was corrected by hardover steering in the op-

posite direction_, after which the brakes were applied. When stopped, the

vehicle was pointing about ii0 degrees and the direction was opposite to
that at which breakout occurred. There were no full spin-outs during any

traverse. When the vehicle broke out, even at high speed, the turn into

the breakout with simultaneous braking always produced a stable stop.

The dynamic vertical motions of the vehicle during the Grand Prix were

exaggerated because of the single crewman. The weight of two crewmen ap-

peared to give the vehicle more stability and to minimize the height of
bounces.

The navigation system was noted to have failed as the crew departed
station 9 on the second extravehicular activity (see sec. 14.6.3). Driv-

ing north, the crew took a heading of 30 degrees to intercept the esrlier
tracks of the outbound leg to station 4 on Stone Mountain. The lunar mod-

ule was acquired visually at a distance of 200 meters, however, and the
outbound tracks were not intercepted. The navigation system was reset at

the lunar module and it performed accurately during the third extravehic-

ular activity. It was a major aid in locating the rim of North Ray Crater.
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The vehicle handled very much like the l-g trainer except that the

pilot-lnduced lateral high-speed oscillations which were experienced in

the 1-g trainer were not apparent in 1/6-g. The steering sensitivity

that had been anticipated from reading the Apollo 15 mission report did

not exist. The most likely reason that the lateral sensitivity was not

experienced was that the excellent restraint of the seat belt prevented

the Comuander's arm from moving and putting inadvertent feedback into
the controller.

The battery covers were opened at the completion of each extravehic-

ular activity. Opening the battery covers threw dust onto the battery mir-
ror surfaces; therefore, the mirrors were completely brushed after each ex-

travehicular activity and were brushed twice at final rover parking after

completing the third extravehicular activity. Even though the mirror sur-
faces were brushed as well as possible, battery 2 temperature caused the

actuation of a caution and warning flag while driving to station ll/12.

The crew felt, subjectively, that they were riding 1/2- to 1-inch

higher than they had ridden in the 1-g training vehicle. The reason for

this is that, in 1/6-g, the crewman sits much higher inside the pressure
suit than he does in 1-g.

The maps and the map holder were inaccessible while the rover was in

motion. The only map used during the traverses was the contour map with

the bearings and distances to stations on it. A fastening clip would al-

low the Lunar Module Pilot to use the contour map while the rover is in
motion.

During initial lunar communications relay unit installation on the

lunar roving vehicle, the integrity of the power cables was difficult to
maintain. When the Lunar Module Pilot released the cable to check the

connection, the cable memory would cause the connector to pull free from
the attach point.

At the last two stations of the third traverse, the rover was parked

on slopes such that the lunar communications relay unit antenna mast was

essentially vertical when the antenna was pointing at the earth. There-

fore, any motion on the antenna handle in yaw produced motions in roll

and pitch. This made antenna alignment more time-consuming at the last

stations. The Lunar Module Pilot assisted in pointing the antenna in
several instances. There were also several instances in which the Com-

mander could not use the automatic gain control meter when aligning the
antenna because he was standing in front of the lunar communication re-

lay unit. In those cases, a quick vector from the Lunar Module Pilot
enabled S-band high gain acquisition. The final lunar communications re-

lay unit alignment tune-up always placed the earth image in the antenna
alignment sight.
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The lunar communications relay unit was brushed at all extravehicu-
lar activity stops and was brushed after opening the battery covers. The
thermal cover was folded over the lunar communications relay unit switches
at the final stop as stated in the preflight instructions.

9.9 LUNAR ORBITAL SOLO OPERATIONS

9.9.1 Plane Change Maneuver

The command _id service module plane change maneuver was delayed un-
til Just prior to lunar module ascent. The procedures used were the same
as for all previous service propulsion system maneuvers.

9.9.2 Visual Observations

Techniques.- Man has several unique capabilities which can be used

to complement data obtained with remote sensors. These are Judgement,
curiosity, and an eye with far greater dynamic range and color sensitiv-
ity than any existing or proposed imaging sensor. During preflight train-
ing exercises, it _as repeatedly demonstrated that the human eye, intel-
ligently directed, could see and identify geologic features which either
failed to appear, or which appeared but could not be recognized on photo-
graphs. Resolution, although a measurable quaz,tity, never seemed to be
the entire key to recognizing a geological feature. Perhaps the human
observer's ability to absorb a big picture and then follow it to a de-

tailed small-scale feature enhances his ability to recognize the many
subtleties of interpretive observation. Another advantage of the human
eye is the ability to almost simultaneously observe features in a wide
range of illuminations.

During the Apollo 16 mission, the average viewing time of a selected
target was slightly over 1 minute. Apollo missions are characterized by
extremely high levels of crew activity and, therefore, time for visual
reconnaissance is at a premium. The spacecraft attitudes which provided
the most comfortable viewing were those chosen for forward and north-
oblique photography with the mapping camera. _he least desirable atti-
tude was in the minus-X scientific instrument module data collection mode
because the target was at its closest point of approach at the same time
it came into the observer's field-of-view, making acquisition difficult.

Preflight training was conducted by flying a T-38 aircraft at h0 000
feet where the resolution of the unaided eye is roughly equivalent to that
obtained with a 10-power magnification from 60 miles, and the angular rates
of the line-of-sight are similar. Several lessons became apparent. The
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first was the necessity to develop a habit of observing and verbally de-

scribing simultaneously. The second was the requirement for an observa-

tion plan. The third was the necessity of sketching subtle features that

are anticipated not to be obvious from the accompanying photography. The

last was that, since time is at a premium, every possible effort must be

made to efficiently set the camera, acquire the target in the camera field-

of-view, and record the camera frame and magazine identification.

Considerable training time was spent in the study of lunar processes

and theory and in learning lunar geography. The latter study proved to be

a key element in the efficient utilization of the Command Module Pilot's

time by allowing him to recognize his location and the major geologic

questions associated with a particular region without having to refer to

a map.

The effectiveness of the observational techniques used on Apollo 16

has been clearly demonstrated; however, future improvement can be realized

by considering:

a. The use of optical devices with more magnification and some form

of image stabilization.

b. The allocation of more film to document unscheduled observations.

c. The use of a 35-ram camera, with through-the-lens viewing and in-

ternal light meter, to aid in rapid photographic documentation.

d. A polaroid-type camera system would allow efficient planning of

subsequent observations and also aid the crew in determining which as-

pects of a given scene do not show up clearly in photographs.

Visual impressions of the lunar surface.- During the early revolu-
tions in lunar orbit, the earthshine illuminated a relatively large amount

of detail; however, this detail was lost in time as the earth's effective

reflecting area became smaller. Photographs should be taken at a time

when the earth is presenting its maximum lighted surface.

Craters on the moon can occasionally appear as hills when looking

out the window just as they do when looking at photographs. This inver-

sion occurred most often while looking out of window 5 while in the sci-

entific instrument module attitude, and almost always over the more non-

descript areas of the far side.

There is very little around the moon to aid in forming a feel for

the size of objects. Since the moon is so heavily cratered at all scales,

it looks very similar from 8 miles or 60 miles. The difference is really

in the types of features which can be detected at different ranges. For
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instance, the small-size lineations, which are typical of all of the moon

except for the mare surfaces begin to show up somewhere between 25 and
30 miles to the _laided eye.

In an attempt to settle the question of the moon's color, a wheel

was carried on Apollo 16 which had color chips for comparison. The con-

cept was that the erew would hold a color chip up and compare it with the

lunar surface. However, two difficulties showed up the first time this

was attempted in :Flight. First, the crew could not arrive at a consensus

on the color chip that most nearly matched. All crewmembers agreed that

none of the chips actually matched (the colors chosen were quite differ-

ent to their eyes). The second problem was the difficulty in getting

both the color chip and the lunar surface in the same lighting. The Com-

mand Module Pilot saw very obvious tonal differences, especially in the

western maria, but could not quantitatively describe them. The color im-

pressions of an _ea of backside highlands changed with the sun angle.

During the early lunar revolutions, the horizon was clearly definable

within a few minutes of entering the umbra. The time between losing earth-.

shine and detecting the horizon increased as the mission progressed, imply-.

ing a dependence ,on the solar corona.

The horizon gradually increases in definition as the sky takes on a

radiance near the ecliptic. The actual sunrise is very abrupt and can

catch an observer off guard since the intensity increase takes an appar-

ent step function as the sun's disk comes into view.

The Command Module Pilot was observing the lunar horizon and star

patterns from a totally darkened cockpit at about 122:55 when he noticed
a white flash which occurred some distance below the horizon. This flash

was only momentary and was brighter than the brightest star or planet.
The Command Module Pilot did not see any of the light flashes that other

crewmen have seen during lunar missions. It is possible that this was his

only observation of such a phenomenon even though he personally feels that

he saw something external to the spacecraft.

Particles in orbit with command and service module.- Particles could

be seen in lunar orbit with the command and service module during the per-

iod between spacecraft sunrise/sunset and the terminator crossing. These

particles could not be identified but appeared to be rotating since they
would flash or wink. It was not possible to judge their distance from the

command and service module. The particle density was low and essentially

constant during the mission.
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9.9.3 Photography

Ten of the scheduled seventeen low-light-level photographic sequences

were accomplished. The procedures were adequate for all conditions except
the condensation on the windows.

The portable tape recorder was used to provide timing and instruc-

tions during the execution of the sunrise solar corona and zodiacal light
sequences. Without this technique, the sequences could not have been
accomplished.

The moon, in either earthshine or sunlight, was in the camera field-

of view on several sequences, including Skylab contamination study pho-
tography and one attitude for Gegenschein photography.

The attempt to photograph the lunar surface in earthshine should pro-
vide some very useful data about the western areas.

9.9.4 Scientific Instrument Module Problems

The first time the panoramic camera was turned on, itwas accompanied
by a master alarm and a main bus B undervoltage warning. The camera was

immediately deactivated and subsequent analysis indicated that the problem

was caused by the spacecraft heaters coming on simultaneously with the
panoramic camera.

The mass spectrometer boom did not fully retract following its first
full extension (see. 14.1.8). The panel 230 indicator remained at full

ba_berpole although the proximity sensor indicated a safe retraction.

The lunar module crew had reported that the boom appeared to be retracted.

The Mission Control Center was used as the primary source of retraction

data thereafter. Just prior to lunar module jettison, the boom stalled

near its fully-deployed position. This stall was confirmed by both vis-

ual observation from the lunar module and ground telemetry. The boom was

subsequently jettisoned. The jettisoned boom smoothly left the spacecraft
with no visually detectable angular rates.

Retraction of the mapping camera required more than 3 minutes the

first time, but the retraction time seemed to be progressively shorter

as the mission continued (see. 14.5.1). During the transearth extrave-

hicular activity, the stellar glare shield was found to be partially ex-
tended when the camera was in the retracted position (sec. 14.5.2).

The gamma-ray spectrometer boom failed to retract completely during

transearth coast and finally stalled just prior to the final midcourse
correction. This anomaly is discussed in section 14.1.9.
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9.10 ASCENT, RENDEZVOUS AND DOCKING

9.10.1 Ascent

The normal powerup procedure for ascent preparation was modified

slightly; lunar s1_rface alignment stars were deleted and reaction control

system A was shut off before the ascent system feeds were turned on (after

insertion, the cross feed was opened to use both reaction control systems).

The crew was about 20 minutes ahead of the procedures at lift-off minus

35 minutes. After a 15-minute hold, the helmets and gloves were donned

and the ascent ta_iks pressurized. The crew was then ready for lift-off.

The countdown to lift-off proceeded normally and, at auto ignition, a

slight pop was heard, followed by a smooth lift-off. Program pitchover
was on time and the profile was normal throughout the lunar ascent firing.

9.10.2 Rendezvous

Lunar module.- The maneuver residuals were so small at insertion that

no trim firing was required. The vernier adjustment was very small; minus

i0 feet per second[ in the Z axis and minus 2 feet per second in the X axis.

The vehicle was pitched up automatically upon using the rendezvous naviga-

tion program. An automatic rendezvous radar lock-on was obtained at a
distance in excess of 150 miles. Both crewmen visually acquired the com-

mand and service module at this range. Although the command and service

module could not be seen through the tinted crewman optical alignment

sight, it was seen to the side and from below the sight. Since the com-
mand and service _,odule can be visually acquired, the desirability of per-

forming the state vector and the radar checks in the simulators to acquire
radar lock-on at extreme ranges following insertion was demonstrated. Ap-

proximately 23 marks were obtained with the rendezvous radar and they were

fed directly into the abort guidance system. Tracking was accomplished in

both the automatic and pulse-control modes of the primary guidance and

navigation system.

All four solutions for the terminal phase initiation firing were in

substantial agreement (Mission Control Center Real-Time Computer Complex,

the command module computer guidance, the lunar module abort guidance,

and the lunar mod_ie primary guidance). Terminal phase initiation was

performed with the ascent propulsion system. The maximum residuals from

the firing were about 5 feet per second in the X axis and these were trim-
med to zero. During this maneuver, the radar, which was near the antenna

limits of mode-i lock-on, broke lock. The vehicle was pitched up in the

transfer phase midcourse program and radar lock-on was quickly reacquired.
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Because of a procedural error in hitting the enter button too quickly

when reloading the W matrix, a second reloading of the W matrix was nec-

essary. Therefore, only five marks instead of the normal seven were ob_
tained for the first midcourse correction. The first midcourse solution

had a maximum value per axis of 0.9 foot per second, and the second mid-

course solution was even smaller. After the second midcourse correction,

no line-of-sight corrections were made until the lunar module was within
7000 feet of the command and service module.

The braking phase did not commence until 3000 feet separation be-

cause the relative velocity, when passing through 6000 feet, was less

than 29 feet per second. Line-of-sight control corrections during the
remainder of the rendezvous were minimal. Care was taken not to exceed

the command and service module rescue capability braking limitations

which meant that the normal lunar module braking gates were approached
cons ervatively.

When the lunar module was stationkeeping with the command and ser-

vice module, the Mission Control Center requested a lunar module 360-de-

gree yaw maneuver to allow the Command Module Pilot to inspect damaged

panels on the rear of the lunar module that had been seen on television

at lift-off (see see. 14.2.2). The inspection revealed that the outer

thermal cover on the rear of the ascent stage had been bent and torn,

but the thermal blankets underneath appeared to be intact. Following

the lunar module yaw maneuver, the command and service module performed
a pitch and a 360-degree roll maneuver to allow the Lunar Module Pilot

to take pictures of the scientific instrument module bay and of several

bubbles produced by heating of the thermal coating on panels of the com-
mand and service modules.

Command and service module.- The stabilization and control system

was used for attitude control during the rendezvous to prevent optics us-

age from exercising the thrust vector control relay and running the risk

of a repetition of the inertial measurement unit coarse alignment prob-
lem. Generally, the command and service module was flown to attitudes

under command module computer control; however, during tracking and ser-
vice propulsion system thrusting routines, it was flown using the stabil-

ization and control system. This procedure was much the same as the
standard "Rendezvous Procedures with No Inertial Measurement Unit."

The digital event timer on panel i began to count incorrectly during

the rendezvous and it malfunctioned intermittently thereafter. This anom-

aly is discussed in section 14.1.13.

The Command Module Pilot had planned to optically track the lunar

module at insertion, which was scheduled to occur prior to sunset. This

did not prove feasible since identification of the lunar module was not
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possible using the scanning telescope and the prelaunch state vector was

inadequate for automatic acquisition with the sextant. A new state vec-

tor was received from the Mission Control Center and tracking was initi-

ated at sunset using the sextant to acquire the lunar module tracking

light. VHF ranging and the lunar module rendezvous radar were again in
close agreement.

The sextant and scanning telescope were boresighted closely. The

lunar module tracking light was not very obvious in the scanning tele-
scope until near terminal phase initiation. During the lunar module

braking maneuver, following rendezvous, the two forward firing reaction

control system engines appeared as flashlights which blinked on period-
ieally. The rendezvous was normal and all terminal phase initiation
solutions were consistent.

The requirement for television coverage of the lunar module approach
was deleted so that the Space Flight Tracking and Data Network could use
the 210-foot antennas for lunar module communications since the lunar mod-

ule was transmitting on omnidirectional antennas instead of the steerable
ant anna.

In accordance with instructions from the Mission Control Center, the

Command Module Pilot did not don his pressure _rment assembly for the ran-.
dezvous operations.

9.11 LUNAR ORBITAL OPERATIONS -

DOCKING TO TRANSEARTH INJECTION

9.11.1 Docking

Lunar module docking was very gentle, with contact being made at a

low closure rate ,0f about 0.2 foot per second. The probe did not capture
the lunar module until some delta-velocity was applied by the command and

service module. There was no indication of the lunar module bouncing away
from the command and service module at contact. Following lunar orbit

docking, latch I0 functioned normally.

9.11.2 Post-Docking Activities

Lunar module post-docking powerdown was to be performed according
to procedures in the contingency checklist under "Docked Deactivation -

Staged" with minor modifications. These procedures were implemented im-
mediately after _)eking and, at the same time, all the rocks and the ex-
periments that w_e being returned from the l_lar surface were transferred
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to the command moduie. Articles were transferred exactly as they were to

be stowed and this stowage went ahead of schedule. Because a rapid dry-

-out of the water boiler was anticipated, the crew was requested to delete

the transfer of a few items such as the personal preferance kits and the

data storage electronics assembly. However, because of a slow dry-out,

all equipment was transferred prior to final lunar module powerdo_ua and

tunnel closeout. The water boiler dry-out was so slo_, in fact, that

some equipment was reactivated to decrease the dry-out time.

During the equipment transfer, a large amount of dust had begun float-

ing around and much of it was transferred to the command module cabin. The
vacuum cleaner failed after it had been used for about 20 minutes. There-

fore, all the dust could not be collected. Most of the sample collection

bags were free of dust and debris and the only things that really needed

cleaning were the deep core sample and the big rock bags. Dust particles

in the lunar module cabin atmosphere did provide some hindrance to the
crew during the unsuiting and the dry-out period.

The lunar module could have been Jettisoned at this time and would

have resulted in a shorter day than was experienced; however, early on ren-

dezvous day, the decision had been made by Mission Control to delay lunar

module Jettison untilthe following day in an attempt to shorten the length

of the rendezvous day. This change in the lunar module-Jettison timeline

created confusion and inefficiency in that several hours were consumed on

transearth-inJection day with lunar module powerup, pressure garment don-

ning and lunar module Jettison taking the place of regularly scheduled ac-
tivities.

Upon completion of water boiler dry-out, the lunar module was finally

powered-do_ra according to the procedures. The crew ingressed to the com-

mand module, closed out the lunar module tunnel hatch and the command mod-

ule hatch, and commenced their rest period at the same time they would

have if the lunar module had been Jettisoned on rendezvous day.

9.11.3 Lunar Module Jettison

Upon completion of the rest period following the rendezvous and dock-

ing the crew received a series of flight plan and procedures updates which

modified two different sections of the contingency checklist and one sec-

tion of the timeline book. By this time, the timeline book was becoming

very messy because of deletions and additions and it was difficult to fol-

low the procedures through. However, the crew felt that the proper switch,

circuit breaker, and systems configurations had been identified.

About the time of loss of signal, the crew had donned their suits and

commenced final closeout. Final closeout was completed on the backside of

the moon. The up-linked differential velocity program was verified, the
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guidance computer and digital autopilot were verified, and the mode control

switch was placed in "attitude-hold" (versus the required "auto" position).

The command module was ingressed on time and a suit integrity check was

initiated at about the time of acquisition of signal. (The pre-separation

pressure garment integrity checks were never satisfactorily concluded due
to the crew falling behind the new timeline. )

Houston noted that the mode control switch was in "attitude-hold" in-

stead of "auto", but the crew was given a "go" for lunar module Jettison

nevertheless since that configuration was acceptable. The lunar module

was Jettisoned a few minutes late. At the time of Jettison, the lunar

module began a slow tumbling maneuver in all three axes, and a thruster
was never fired as far as the crew could tell (sec. 14.2.6). Once lunar

module Jettison was accomplished, the crew unsuited and initiated the two-

revolution preparations for transearth injection.

Another problem which had been encountered during lunar orbital op-

erations was that two lithium hydroxide canisters tended to stick during

removal (sec. 14.I.15). The first one had been used 9 hours longer than

the normal time because the changeout was overlooked during one of the

solo periods when a large number of flight plan updates were being made.

This canister was snug when removed at about 152 hours. The second inci-

dent occurred on the night following rendezvous. This canister was re-

moved on schedule but removal was extremely difficult.

9.11.4 Subsatellite Launching

There were no vibrations or sounds associated with the launching of
the particles and fields subsatellite. All indications were that it was
normal.

9.11.5 Transearth Injection

The transearth injection maneuver was conducted normally using the

same procedures that had been used for the plane change maneuver with the

exception that the pitch-2 and yaw-2 circuit breakers were pulled after

gimbal startup. There was no explanation from the ground as to why the

philosophy in the use of these circuit breakers had been changed.

Two unexpected observations were made during the maneuver. The first
was that the command and service module oscillated between both sides of

the roll deadband; whereas, on other long firings, the spacecraft remained
on one side of the roll deadband. The second unusual observation was the

presence of a sli@_t "buzz" approximately 30 seconds into the maneuver.
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Throughout the firing, the entry monitor system, guidance and navi-

gation, and voice update values were in agreement.

9.12 TRANSEARTH FLIGHT

9.12.1 Transearth Extravehicular Activity

The transearth extravehicular activity was conducted exactly accord-

ing to the checklist procedures. A great deal of training time had been

invested in the procedures for stowage, extravehicular activity prepara-

tions, and post-extravehicular operations. This certainly paid off and

allowed the crew to speed up the preparations. The timeline and proce-

dures were more than adequate. The television camera and oxygen purge

system were stowed after the post-extravehicular activity sequences; how-

ever, these items should not have been stowed since they were subsequently
used.

Preparations.- The final days of preflight training disclosed that,

through an oversight, the time allowed for pre-extravehicular activity

pressure garment donning was insufficient. Therefore, the planned time

for hatch opening was delayed i hour. The Mission Control Center allowed
the crew to sleep an extra hour on the day of the scheduled extravehicular

activity, which once again put them behind the timeline; however, the crew

was able to make up approximately 45 minutes of this delay due to the ex-

cellent procedures developed for this segment of the operation. Approxi-

mately i hour was spent on extravehicular activity preparations on the day

of transearth injection, but there was not a great deal that could be done

without interferring with the sleeping and eating cockpit configurations.

Quite a bit of unopened food was jettisoned in order to provide space

for the post-extravehicular activity stowage. This problem was aggravated

by reducing the length of the mission by one day, but was basically caused
by an overabundance of food.

The extravehicular mobility unit maintenance kit was approximately

three times the thickness of the lunar module kit (sec. 14.3.9). The pack-

ages of pressure garment assembly helmet wipes in the command and service

module kit were approximately five times larger than those of the lunar
module kit.

The extravehicular activity preparations and checkout were normal.

The Lunar Module Pilot and Con_nander's pressure garment assemblies were

lubricated again and this resulted in much easier glove and helmet don-

ning. The command module suit circuit integrity check was expedited by

using the hatch equalization valve to drop the cabin pressure to 5 psi.
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While the hatch equalization valve was open, a continual stream of debris

was being sucked out of the cabin including a small screw which went

through the valve just prior to cabin depressurization. A debris screen
should be installed over this valve to prevent an object from becoming

permanently lodged in the valve.

Moving around in the cabin in pressurized suits is relatively easy

(much easier than in the water immersion facility); however, it is a little

harder to see some of the main display console because of the natural tend-

ency to float closer to it. Ground support personnel monitored the space-

craft systems for the crew throughout the extravehicular period.

The counterbalance was removed from the side hatch by backing out

the pin which locks the two bellcrank assemblies together. Both removal

and reinstallation of this pin were extremely simple. There was no prob-

lem with interference between the cam nut and hinge since the crew had

been trained to adjust the relative positions of these items during hatch

opening and closing. The rate of cabin depressurization decreases mark-

edly when the cabin pressure drops below 0.5 psi. Because of this, the

hatch was opened with a small positive differential pressure remaining in

the cabin. This produced a noticeable force on the hatch as soon as the

dogs were clear of the striker plates. There was very little frictional

load on the hatch during opening and closing.

Visibility.- The sun angle chosen for the extravehicular activity
was excellent from an operational point of view. It was, however, very

difficult to look at the unipole, when installed, or to look in the di-

rection of quad D while standing in the hatch. Visibility of the scien-

tific instrument module bay was good. The only area seen to be in a dark
shadow was between the scientific instrument module bay bulkhead and the

side of the mapping camera. After the panoramic and mapping camera cas-

settes were removed, visibility into the empty cassette spaces was excel-
lent.

Mobility.- The extravehicular activity was as easy as it was in KC-
135 aircraft training. The "dutch shoes" worked fine and did not exhibit

a tendency to release the Command Module Pilot, even when leaning sideward.

Getting into and out of the shoes was easy and positive. The traverse path

is excellent and allows flexibility in orientation and sequence of opera-

tion. The only mobility problem encountered was an extremely stiff left

wrist joint on the Command Module Pilot's extravehicular glove. This in-

creased stiffness, compared to the right glove, was evident as soon as the

gloves were donned. A concentrated effort was required to move the wrist
joint about the axis which corresponds to a yaw control input on a hand-

controller. As the wrist became fatigued, the right hand was used to pos-

ition the left wrist. Fortunately, the wrist joint remained stable in any

position in which it was placed.
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Retrieval of the panoramic and mapping camera film cassettes was very
easy and went just as practiced.

The umbilical was not in the way and its presence required considera-

tion only during ingress when it had to be positioned by the Lunar Module
Pilot.

Extravehicular activity hardware.- All equipment functioned as antic-

ipated. The temperature was good, both in the cabin during depressuriza-

tion and during the extravehicular activity. The only nuisance item was

the extravehicular activity hook. The opaque sun visors of the Commander's

lunar extravehicular visor assembly were very easy to deploy but were im-

possible to raisewith one hand. The trap door in the visor center sec-

tion allowed adequate visibility.

During a suit pressure check, a pressure of 3.5 psi was observed on

the Commander and a pressure of 3.8 psi was observed on the Lunar Module

Pilot (sec. 14.3.8). Both crewmen were on the cabin suit loop at the
time.

Scientific instrument module bay observations.- The scientific in-

strument module door pyrotechnic cut was smooth all the way around. The

spacecraft-lunar module adapter/service module pyrotechnic cut was quite
jagged, similar to cuts seen on test specimens.

The mapping camera stellar glare shield was partially deployed and

the "cuckoo door" was resting on the extravehicular handrail (sec. 14.5.2).

The gamma-ray _xperiment was retracted with the tapered portion of

the guide pins sticking through their shoes. The door was open approxi-

mately 30 degrees and was loose enough to be jiggled a couple of degrees.
There was no evidence of the cause of the incomplete retraction.

The paint on the service module cork covering and on the reaction

control system quad housings was blistered. The coatings on the radia-

tors looked clean. There was no ice on the command module dump nozzles.

Unipole operations and microbial response experiment.- The pole was
easy to install and remove. Because of the sun orientation, the data ac-

quisition camera could not be verified to be operating by looking at the

camera light; however, it could be felt to be running.
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Removal of the data acquisition and television cameras from the pole

was easy as was installation of the microbial ecology evaluation device.

However, two problems arose with the device. First, a Velcro strip (pro-

vided to keep the locking ring in place) continually floated to a position

that interferred with viewing the sun sight, and second, the cover of the

device did not automatically lock when it was closed. Locking the cover

was a three-handed operation. One hand was required to hold the Command

Module Pilot in position, one to close the lip and compress the seal, and

the third to rotate the lock pin. As a result, the microbial ecology

evaluation device was passed into the Lunar Module Pilot who performed

the operation inside the command module. The cover was open approximately

3 to 5 seconds beyond the planned time and was not in direct sunlight d_r-

ing this time.

The sun sight worked fine and is an excellent concept. Because of

the previous problems with the digital event timer, the Commander timed

the exposure of the microbial ecology evaluation device with his wrist-
watch.

Hatch closin_ and post-extravehicular activity.- Hatch closing was
easy and went as planned. It would have been desirable to have a posi-

tive means of determining that the hatch dogs _e over center by indica-

tions from the hatc_h dogs themselves rather than relying on the gear box
indications alone.

The post-extravehicular activity reconfig_ration was a real thrill.

This took several hours and was greatly aided by the assistance of the

Mission Control Center in the execution of the flight plan.

9.12.2 Transearth Coast Problems

Severs_l problems occurred during transearth coast. The inertial sub-

system warning light mysteriously came on and went off several times ac-

companied by an inertial coupling unit failure warning on the computer

display keyboard (sec. 14.1.4). In troubleshooting this problem, it ap-
peared that a "no-digital-autopilot" configuration was required in order

to do the malfunction procedure test of the error needles.

The crew couch Y-Y shock-attenuating strut was very hard to extend

and lock prior to entry (sec. 14.1.17). It seemed as though the Y-dimen-

sion of the spacecraft had changed with respect to the couch.
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9-13 ENTRY, LANDING AND RECOVERY

The entire entry sequence was normal. The entry stowage was comple-

ted the night before except for stowing one pressure garment assembly and
tying down loose items such as the jettison bag. On entry day, it took

less than 2 hours to finish the cabin preparations. As previously men-

tioned, several inertial subsystem warnings were observed during the fi-

nal hours prior to entry. A set of entry procedures similar to those

used during the major service propulsion system maneuvers had been worked

out. These procedures incorporated the use of erasable program _P 509

and zero coupling data unit (verb 40), and were quite straight-forward
and well explained.

All pyrotechnic events occurred on schedule. The entry profile fol-

lowed predictions. Due to extensive entry training in the simulators,

the crew felt completely comfortable about entry procedures. The Command

Module Pilot had no difficulty maintaining an effective instrument scan

under the entry deceleration, which exceeded 7-g. The only unexpected

condition was the magnitude of the command module oscillations once the

drogue parachutes were deployed. The oscillations may have been the same

as programmed into the command and service module mission simulator but,

without the dynamics, may not have been fully appreciated.

The command module reaction control system isolation valves were

closed at approximately 3000 feet and the direct coils mode was activated

in the plus- and minus-yaw directions. The yaw Jets were heard when fir-
ing in the plus-yaw direction (which was fired first) but not in the minus-

yaw direction.

The firing of the command module negative pitch Jets could be con-

firmed only by changing spacecraft rates.

The landing was flat and much harder than the Commander recalled from

the Apollo l0 mission. The parachutes immediately pulled the vehicle into
the stable-II attitude. The Command Module Pilot and Lunar Module Pilot

jettisoned the parachutes and immediately initiated uprighting procedures.

Uprighting took an estimated 4 1/2 minutes, and the command module stayed
for what seemed to be an excessive time in an attitude in which the ve-

hicle seemed almost ready to upright into the stable I attitude. Post-

flight inspection showed that the center uprighting bag was only partially
inflated.

The recovery operation proceeded smoothly until a swimmer opened the

hatch and placed a large bag inside. The swimmer said that the bag con-

tained a temperature monitoring device which must be taped to the main

display console. The crew had not seen this device before nor had they
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been briefed on it. (Editor's Note: The temperature measurements were

made to determine the temperature changes after landing that may be an-

ticipated in the Skylab program. ) This unexpected operation resulted in
some confusion and an unnecessary 5 to i0 minutes was expended inside the

cabin, which slowed down the quickest crew recovery ever. The time from

spacecraft splashdown until the crew was on the deck of the USS Ticonderoga
was less than 37 minutes.

9.14 GENERAL OBSERVATIONS AND RECOMMENDATIONS

9.14.1 Spacecraft Systems

Li_htwei@ht headset and communications carrier.- The lightweight head-
set was used extensively by the Lunar Module Pilot while the Command Module

Pilot and Commander chose to use the "Snoopy" hat almost exclusively. The

difficulty with the lightweight headset arises from the requirement to hold

the microphone in close proximity to the mouth. This requires the use of

at least one hand to maintain good communication. As a general rule, how-

ever, it is much more convenient to have both hands free for note taking

and/or manipulating switches while talking. The lightweight headset is

too bulky to be conveniently worn on the head.

The existence of the crewman's communications umbilical slows down

operations by putting unwanted forces on the crewman's body, by presenting

a constant snag potential, and by requiring a unique path around hardware.

The control head and the tee adapter are also cumbersome. The suit adapter

is very stiff which means that as the crewman moves around, the torques

coming from the umbilical are transmitted to the headset. If the headset

is the lightweight type, it is going to be repositioned or knocked off,
and if the headset is the "Snoopy" type, it is going to be a constant per-

sonal nuisance. Hlither a lightweight headset like those used in the Mis-

sion Control Center or a squawk box like the executive conference telephone

adapter should be provided. The latter is preferable because it alleviates

all the problems associated with umbilicals. (Editor's Note: A config-
uration exists for the attachment of the lightweight headset to the con-

stant wear garment which frees both hands for normal work. However, the

head must return to a preselected "talk" position because the microphone

is maintained at constant position relative to the body.)

The requirement for someone to monitor the communications at all times

resulted in the Command Module Pilot wearing the communications carrier the
entire mission. When the communications carrier is worn continually, it

can present a personal hygiene problem. For long flights, consideration

should be given to carrying additional cloth helmets since they are sepa-

rate from the electronics. A spare set of electronics should be considered.
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0nboard voice and data recordin6.- There is a need for continuous
recording of onboard voice. The Apollo equipment has several shortcomings
which are :

a. The voice is recorded simultaneously with the spacecraft data.

b. The ground controls the record and playback sequence; consequently,
the crew must refer to the flight plan or ask the ground for the current
configuration.

c. The tape recorder talkback indicator in the cabin indicates tape
motion and not direction.

d. The data storage equipment uses a separate recording amplifier
and the crew does not know the sound level being recorded.

e. All data recorded may not be recorded on the ground as it may be
recorded over before that portion of the tape is dumped.

Voice-operated ke_in_ circuit.- The voice-operated keying circuit
worked flawlessly throughout the mission as long as the communications
carrier was used. The Command Module Pilot used this mode almost contin-
uously while solo in orbit and during a large portion of transearth coast.

Guidance and navigation optics.- Auto optics worked well when the in-
ertial measurement unit was realigned. There was more trunnion overshoot
than anticipated when acquiring targets. The Command Module Pilot had the
distinct impression that the amount of overshoot and the time to damp os-
cillations increased with mission duration. Toward the end of the lunar

orbit period, the initial overshoot exceeded the sextant field of view.
This overshoot, based on optics position indicator readings, occurred pri-
marily in trunnion.

Sextant reticle illumination Ms normally comfortable when used at
the maximum intensity, providing good star/reticle balance. The scanning
telescope illumination had to be reduced to a minimum to allow star iden-
tiflcation. The command and service module mission simulator displays
are quite accurate. During training, Kennedy Space Center simulations
personnel had added a filter to the scanning telescope which reduced the
star intensity. This was a significant aid in providing a good feel for
the amount of time necessary to acquire stars with the scanning telescope.
The star patterns, under the best conditions, were never as obvious through
the scanning telescope as they were out the window.

The scanning telescope n_Astbe in focus before stars can be seen. It
_as focused on the reticle for best results. The focus seemed to be quite
sensitive and _ould drift, even when taped. Also, the sextant focus ad-
Justment was at one extreme of its travel. Improper use of the Teflon
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locking nut which locks the eyepiece guard cup in place caused the eye-
piece to unscrew in zero-g. The crew was not properly trained for this
operation.

Tape was app].ied to the eyepieces to retain them after the scanning

telescope eyepiece was found floating around the cabin.

There was a noise when the shaft was driven at the higher speeds.

The noise, which increased throughout the mission, sounded like that made

by the optics position indicators on the command and service module mis-

sion simulator. The noise was apparently proportional to the rate of

drive and did not seem to be affected by switching from the "resolve" to
the "direct" settings. This anomaly is discussed further in section
l& .1.lb.

The scanning telescope was generally useless while the vehicles were

docked because of the large amount of light reflected off the lunar mod-

ule steerable antenna and one of the reaction control systems quads. Dis-

crimination between lunar module paint debris and stars was not a problem

when using the sextant because the debris particles were always out of
FOCUS •

One realignment was performed using the eE_rth and sun during trans-

lunar coast. The earth was not full at the time and some difficulty was

experienced in defining the center of the disk.

Command module computer.- Useful modifications and additions to the
Apollo software continue to become apparent as operational experience is

gained. Several erasable memory programs were tested and formalized prior

to flight for use as both planned evolutions and contingency work-arounds.

The EMP 509 procedure, to prevent coarse aligrmlent of the inertial meas-

urement unit in the presence of the coupling display unit transients, was

one of these and, as previously discussed, played a major role during the

mission. This is a classic example of the utility of developing procedures

to handle certain critical situations even though a reasonable cause cannot

be predicted.

Perhaps the most useful addition to the command module computer normal

procedures was a set of addresses that could be interrogated to display the

maneuver completion time during a digital-autopilot-controlled automatic

maneuver. The crew routinely executes maneuvers requiring up to 15 minutes

for completion, followed immediately by a scheduled activity. The efficient

execution of real-time flight plan changes resulted directly from being able

to determine the acceptability of the selected maneuver rate. Future auto-

pilot design should provide an option which would allow specifying maneuver

completion time. Another useful feature would be an autopilot which would

allow non-symmetrical and/or discrete deadbands for each control axis.
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Prior to flight, a program to monitor for a stuck-on thruster was

developed which would turn on the inertial subsystem warning light and

master alarm if the spacecraft exceeded its deadband by some specified

amount. This program was used during the translunar coast and during

each lunar orbit sleep period. It allowed the Command Module Pilot to

sleep in lunar orbit without concern for the reaction control system
consumables.

Electrical power.- The systems checklist requires that the battery
manifold be vented to vacuum after charging the battery. Ground support

personnel requested that the manifold not be vented below cabin pressure.
The valve configuration makes it more a matter of luck to retain a posi-

tive pressure. The manifold pressure rose rapidly following each vent-

ing before stabilizing.

During the charge on battery B prior to the transearth extravehic-

ular activity, the crew detected a definite odor in the lower equipment

bay. This odor was described by the Lunar Module Pilot as being like hot
electrical insulation, while the Command Module Pilot thought it was rem-
iniscent of an automobile battery charger odor.

Cabin environment.- Following insertion into earth orbit there was

quite a bit of debris floating around the cabin. This contamination con-
sisted of small screws, fasteners, ends trimmed from wiring and general

trash. The quantity of this cabin debris remained fairly constant through-

out the mission. At times, the suit circuit return valve (cabin air re-

turn) had to be cleaned more than once a day in order to keep the oxygen

demand regulator flows at their normal values.

Once the transfer of equipment from the lunar module began, the com-

mand module cockpit became noticeably dusty with quite a few rock chips

floating around. The dust could be found on almost all surfaces although

there was never any problem with floating dust.

The cabin fan filter was installed on the first day of the flight.

After rendezvous, the cabin fan was turned on prior to opening the lunar
module hatch and ran continuously until after transearth injection when it

made a very loud moaning noise and was turned off (sec. 14.1.11). The ca-
bin fan inlet screen was generally covered with a great deal of trash. Af-

ter the fan was turned off, a piece of paper was taped over the cabin fan

inlet screen in an attempt to retain the dust within the ducting. There

was no problem with dirt coming out of the duct, even when the fan filter

was removed for entry.

The vacuum cleaner failed after less than i hour of use while at-

tempting to clean items in the lunar module that were to be transferred
to the command module.



9-61

f

The suit hoses were arranged such that the Lunar Module Pilot's hoses

were alongside stowage container A8, the center hoses were wrapped around

the inside of the tunnel, and the left hoses were along the minus Y side

of stowage container A2. There was never any sensation of inadequate ven-
tilation or circulation.

The cabin temperatures were comfortable during translunar coast.

Each crewmember found his own combination of clothing which was most com-

fortable. Wearing only the constant wear garment while in the sleeping

bag was comfortable to everyone during the translunar coast and trans-

earth coast sleep periods. While in the 60- by 8-mile lunar orbit, the

cabin felt considerably warmer and the most comfortable attire was the

constant wear garment only. During solo operations in the 60-mile cir-

cular orbit, the cabin cooled noticeably. In order to sleep, the Command

Module Pilot had to wear his inflight coverall garment in addition to the

constant wear garment. Once the lunar module crew returned to the com-

mand and service module, the cabin temperature was comfortable again.

The cabin walils and windows began to collect a great deal of conden-

sation following transearth injection. The quantity of condensate slowly

increased throughout the transearth coast and did not diminish even in

passive thermai control. By the time the Skylab dump photography was at-

tempted at approximately 246 hours, the windows had to be wiped between

each photographic sequence.

One characteristic which has been jokingly mentioned on previous

flights is that loose objects seem to eventually end up collecting in the

lunar module/command module tunnel area. This [phenomenon was evident

throughout the flight either with coupled reaction control system engines

or unbalanced jet configurations.

A qualitative observation is that the tunnel area was almost always

cooler than the rest of the spacecraft cabin.

Water/_lycol temperature control valve problem.- The primary water/
glycol temperature inlet valve started oscillating rapidly while in earth

orbit. The crew was advised to select the manual mode of operation and
that mode was used for the remainder of the mission. The minimum valve

rotation seemed to cause a 10-degree shift in the evaporator outlet tem-

perature. The temperature inlet valve was initially adjusted during the

early hours of translunar coast passive thermal control. The valve was
cycled just prior to the transearth extravehicular activity by going to

the automatic mode for several minutes, then returning to the manual mode.

The valve appeared to be working normally in the automatic mode; however,

the crew elected to leave it in manual for the extravehicular activity.
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Water/_lycol temperature decrease durin_ extravehicular activity.-
The water/glycol evaporator inlet temperature dropped during cabin depres-

surization for the transearth extravehicular activity, but the mixing valve

position did not change since it had been placed in the manual mode posi-

tion. There was a considerable amount of water in the cabin. In fact, the

crew observed ice floating out of the hatch throughout the extravehicular

activity.

9.14.2 Crew Station

Pressure 6arment donning, doffin6 and stowa6e.- Approximately i hour
was required for the Commander and Lunar Module Pilot to doff and stow

their A7LB pressure garment assemblies. The actual donning and doffing
was accomplished most easily in the lower equipment bay with a second

crewman assisting, as needed, from the couch position. Zipper closure is

probably the most difficult part of the donning operation. During the

second scheduled (third actual) lunar module manning, the Commander and

Lunar Module Pilot used the lunar module cockpit for donning to obtain

more room for zipping the suits. This seemed to speed up the donning ac-

tivity and was a more convenient place to work.

The Command Module Pilot required approximately i0 minutes to don

or doff his pressure garment assembly in the lower equipment bay by him-

self. Having another crewman to assist in zipping saves approximately
B minutes.

The most time-consuming part of doffing the suits is the actual stow-

age of the suits in their bag. Although stowage of three pressure garment

assemblies (two A7LB's and one A7LB-CMP) in the bag had been accomplished

several times during training, it proved to be impractical in flight. Sev-
eral factors may be involved in this difference. First, in flight, there

is no gravity to help fold the pressure garment assemblies and keep them

in place. Second, the accessory pockets were more prominent on the flight

suits than on the training suits. A third possible factor is that the

best possible care is taken of the pressure garment assemblies in flight,

which means that there is a minimum of pulling and bending on the zipper.

Another possible factor is that the simulator and mockup training bags
have become stretched with use.

To alleviate the stowage problem, the Command Module Pilot's suit

was Stowed under the left couch. In order to provide access to stowage

containers AI and A2, it was not tied in place.

Following the transearth extravehicular activity, all three suits

were stowed in the pressure garment assembly bag through the generous use

of kick-and-shove techniques. The center couch had to be removed at the
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marmon clamp in order to accomplish this. The size of the pressure gar-

ment assembly bag should be enlarged and some extra volume made available
in the area between the center couch and the rotation hand controller

junction box.

Pre/post sleel? configurations.- The pre-sleep checklist takes approx-
imately 30 uninterrupted minutes to complete. Several other items, such

as filling a drink bag for each crevman and taking one last drink before

chlorinating the water, takes additional time. The drink bags were very

useful since all the crewmen found that they would awaken during the night
and be thirsty. It is impossible for someone to move around without wak-

ing the others, so having a drink bag handy helps avoid sleep interrup-
tions. For the ss_ne reason, each crewman should take care of his waste

management requirements before the sleep period begins. All of this adds

up to the pre-sleep checklist taking approximatley i hour of time. Sev-

eral items were added to the pre-sleep checks during the mission. These

were winding the watches, stowing the optics to prevent being periodic-
ally awakened by the sun, and verifying that the Mission Control Center

was receiving an m_equate biomedical signature on the desired crewman.

There should be some uninterrupted time of about 30 minutes follow-

ing crew wake-up to provide an opportunity for the crew to clean up the

cabin, compile the morning reports, review the flight plan, and go to the
bathroom.

Cabin lishtin,_.- The electroluminescent lighting provided just the
right illumination for easy monitoring during sleep periods. The addi-

tion of some form of switch position indication would make an excellent

instrument and control display.

The floodlights were used almost continuously except "during sleep
and low-light-level] photography periods. To avoid afterglow problems

with the photography, a set of cardboard shades was prepared and the

shades were taped to the floodlights nearest window 4.

The floodlights, including the fixed ones, do not provide sufficient

illumination for interior pnotography using color interior film (ASA 500)

except in selected locations.

The window shades worked quite well on all windows.

Stowage.- Flight experience indicated that the many hours of training

time that was spent on stowage and cabin reconfigurations was well spent.

The three segment nets inside the large stowage containers (AI, A2, and

A8) were very useful[ as stowed items began to "loosen up" from their or-
iginal placement.
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Prior to lunar orbit insertion the crew reconfigured the cabin to a

preplanned lunar orbit configuration which used containers F1 and F2 for

camera and film stowage. Each night, the crew would group the next day's

supply of film magazines for easy access.

All command and service module mission simulator timeline training

during the 2 months prior to the mission was done with the lunar-orbit

stowage. This established habit patterns that prevented spending time

looking for items.

Control and collection of waste material is a continuing problem in

space flight. Apollo 16 was equipped with three standard jettison bags
for this purpose. The difficulty in using one of these large bags for

waste stowage stems from the method of inserting trash in zero-g. Keep-

ing trash which has already been deposited in the bag from floating out
when the bag is reopened was a problem. Using a smaller bag like the lu-

nar module purse or the urine stowage overwrap bag for intermediate stow-

age of trash items, and periodically transferring them to the big bag

helped. A temporary stowage bag for each crewman's personal use was most

pract ical.

Another problem on an Apollo J mission is the necessity for the use

of a trash bag following the transearth extravehicular activity. Two

standard jettison bags had been completely filled at the time of lunar

module jettisoning and the third was almost full at the time of the trans-
earth extravehicular activity. Two urine overwrap bags were used for the

extravehicular activity trash jettisoning in order to retain the third

jettison bag for the final two days of the mission. This last jettison

bag was almost completely full at the time of landing. An additional jet-
tison bag would be a very useful item.

The addition of a fourth jettison bag should be provided with, per-

haps, a removable entrance seal such as the slit membrane presently used
on the command module waste compartment entrance.

The pouches were well located and proved to be very useful.

Spacecraft windows.- The windows were generally free of contamination
on the outsides, although there appeared to be some condensation on the

surfaces between the inner and outer panes. This was not a significant

problem; however, window 5 had an additional contaminant which appeared
as a light semi-opaque band, approximately 2 inches wide, running along

the plus-X side of the outer pane.

Crew equipment .-

Portable tape recorder: A speed repeatability test was conducted on
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the portable tape recorder to serve as calibration for the experiment se-

quences which were timed using a countdown tape u A test tape having aud-
ible time increments was used. The playback was consistently i second

fast in 2 minutes of playing time; that is, 121 seconds of recorded ma-

terial was played back in 120 seconds. Speed stability was adversely af-
fected if the recorder was hand-held rather than free-floating.

A countdown tape was made for use with the sunrise solar corona and

zodiacal light sequences. This was done inflight rather than preflight
in order to absorb any speed variations induced by the unaccelerated en-
vironment.

Recorder battery performance varied widely; one operated only one

cassette, whereas another one played both sides of three full cassettes.

During lunar ,orbit, the Command Module Pilot was unable to depress
the red record button; however, it operated properly during transearth

coast. There is a possibility that the tape involved was one of the pre-

recorded ones and, therefore, was interlocked to prevent recording.

Razor: The mechanica& rotary razor worked satisfactorily at the be-

ginning of the mission up to about the time of surface activities, when
the crew chose not to shave. After the beard had grown reasonably long,

the razor seemed to snag rather than cut. Cleaning the razor head with
a wet tissue while the razor was functioning helped. A band-type blade

razor and brushless shaving cream were also carried, but there is no sat-

isfactory way to clean the blade after it is caked with the cream/hair
combination. Shaving with the mechanical razor took approximately 15 min-

utes while almost 45 minutes were required with the band razor.

Binoculars: Ten-power binoculars were flown for the first time aboard

Apollo 16. A comparison of these binoculars and the previously flown mono-
cular indicated a significant improvement in recognition of features. The

capability provided by the binoculars could be improved by (!) the incor-

poration of higher magnification with some form of image stabilization
(2) increasing the field of view and/or providing a zoom capability, and

(3) providing a system with which a scene could be photographed without

having to change instruments.

Two problems were experienced in using the binoculars. The first was

the problem of Jitter, and the second was the difficulty encountered in ac-
quiring a desired target because of the rather limited field of view. The

technique which seemed to work best for acquiring a target was to track

the desired target with the unaided eye and then slide the binoculars into
the observer's line of sight. The binocular lenses had to be cleaned sev-

era& times a day to maintain clarity.
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Sunglasses: The lenses of the sunglasses were not dark enough for

comfortable use in lunar orbit. A significant amount of eye fatigue was

experienced after looking out the window for extended periods, even with

the glasses on.

Cameras: There was only one crew-option color exterior film magazine

for the electric 70-ram camera which inhibited the crew from taking many
potentially useful photographs.

The 35-mm camera system is a most useful tool. Unfortunately, the

inability to change film types without discarding the unused portions of

a magazine inhibits its use. One simple improvement would be to load less

film on each magazine and carry more magazines, although the ultimate sol-

ution would be the incorporation of a removable-magazlne concept.

Interior photography is frequently inhibited by the difficulty in

obtaining adequate lighting. Higher speed films do not appear to be the

best solution since the scenes of interest generally include extremes in

illumination caused by the location of cockpit floodlights and windows.

An electronic flash is a possible solution. The 35-mm system is the best

choice for interior photography because of its fast lens, through-the-lens

focus, and integral light meter.

Mechanical timer: Future spacecraft should have such a device built

into various areas. Ideally, these timers would not only be capable of

being set to some arbitrary time difference, but also could be slaved to

the occurrence of events, such as a boom deployment.

Scratch pad: A Skylab scratch pad was useful for writing down pro-
cedures which were then displayed by taping them around the cockpit. It

was also used as a place to record instructions and as a drawing pad for
sketches.

Flight data file: The Apollo 16 flight data file was very complete

and effective. However, the flight plan volumes should be reduced in

thickness to a size compatable with the available clips. Items such as

logs and summary charts should be relocated to make the flight plan only

that. Since the flight plan was in constant demand in order to allow

timeline execution, the inclusion of information such as menus and medi-

cal logs meant that either the tlmeline had to be interrupted or the data

had to be logged from memory at a later time.

The circular wheel containing photographic data and time-longitude

corrections was extremely useful.

The concept of a separate checklist containing all experiment pro-

cedures and data records made it possible to handle the large number of

real-tlme flight plan changes.
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The simulated oblique views of landmarks did not prove to be partic-
ularly useful on this mission.

9.1k.3 Flight Plan

The flight plans have become progressively :moredetailed and complex,
requiring ever increasing amounts of preflight preparation and coordina-
tion. Apollo missions consist of three distinctly different sets of re-
quirements. The first is a safe and efficient plan to travel to and from
the moon and land al a selected location. The second and third sets are
concerned with maximizing the scientific return from the lunar surface
and the orbital environment. These two are considered separately because
of the different way in which they are dependent on time. The surface op-
erations are, by nature, quite flexible and constrained in time only by
consumables, crew fatigue, and the requirement to descend from and ascend
to lunar orbit. In contrast, the orbital operations can be made only at
discrete times which are a function of the spacecraft position and orbital
plane. This dependence on time increases the reliance on a preplanned
sequencing of events.

For Apollo 16, the flight plan was constructed to maximize the return
of scientific data by integrating multiple requirements into a workable
timeline which was developed through many iterations. This vastly in-
creased the potential for science return. The penalty of this choice,
however, is a complex flight plan and the, perhaps, unreasonable amount
of preflight preparation and training required. The flight plan was writ-
ten in sufficient detail so that, as the crew became fatigued, there would
be a minimum requirement for thinking procedures through in real time.

Previous problems.- Several problem areas were reported during pre-
vious Apollo missions. The first was a feeling that there was never ade-
quate tame in flight to do the things practiced on the ground. Factors
which caused this were the time criticality of fUnctions plus the subtle
problems arising from operating in zero-g. Much time was lost previously
in clock watching to insure that functions were initiated precisely on
time. To alleviate this problem, the capsule communicator was responsible
for calling all time-dependent actions when real-time communications were
available.

A second source of unproductive crew time is monitoring attitude ma-
neuvers which may require up to 15 minutes to complete. This monitoring
is required to insure that excessive middle gimbal angles are not attained
and to insure that the maneuver is completed in time to support subsequent
activities. To alleviate this problem, the crew flew each attitude se-
quence preflight in the simulators which verified the time history of the
inertial measurement unit gimbals and established the adequacy of the plan-
ned maneuver times.



9-68

A third area for potential improvement in orbital timelines was that

a rigorous plan was needed to develop housekeeping habits which would in-

sure that the crew instinctively knew where each piece of equipment was

stowed and the development of an efficient orbital stowage plan. This

was accomplished by flying all orbital timelines in a flight-configured
simulator.

Another problem reported by a previous crew was that the operation
of the scientific instrument module and orbital experiments was too com-

plex to allow the Commander and Lunar Module Pilot to train adequately

without sacrificing important areas of their surface training. The plan

for Apollo 16 was to have the Command Module Pilot be exclusively respon-

sible for these items and to take maximum advantage of real-time help
from the Mission Control Center.

Evaluation of the flight plan.- The Apollo 16 flight plan was an out-

standing one thanks to a monumental effort on the part of the flight plan-
ners, simulator crews, and the capsule communicators. The following les-

sons were emphasized during this mission.

a. Crew eat, rest, hygiene, stowage and exercise periods should be

rigidly adhered to and should be kept free of distractions such as com-

munications and experiment reconfigurations.

b. Each day should begin and end with at least 30 minutes of quiet

time to permit the crew to get themselves and their spacecraft squared

away.

c. One hour per day should be included in the flight plan to handle

persona& hygiene.

d. The density of crew activities that can comfortably be handled
is less when three men are aboard the co, and module than when it is op-
erated solo.

e. The preflight mission plan should be adhered to as closely as

possible in order to maximize the scientific return.

f. Communications that are completely public inhibit free discussion.

9.14.4 Visual Light Flash Phenomenon

The Apollo light flash moving emulsion detector was to have been used

by the Command Module Pilot. However, by the time the experiment was to

be conducted, the Command Module Pilot had seen no flashes, whereas the

Lunar Module Pilot was consistently observing them. Therefore, the Lunar



9-69

,f

Module Pilot was substituted for the Command Module Pilot in the experi-

ment. The Commander saw some flashes, although less frequently than the
Lunar Module Pilot. The Lunar Module Pilot did not notice any demonstrable

variation in frequency associated with his location within the spacecraft.

In fact, the Lunar Module Pilot also saw the flashes while in the lunar
module on the surface. The Command Module Pilot never observed this phe-

nomenon because, qualitatively, he seems to have less acute night vision
than the other two crewmen.

9.14.5 Metabolic Input/Output Analysis

A metabolic input/output analysis was attempted. This analysis in-

cluded the requirement for measuring and logging all fluid and food in-

take and the timing and collection of selected urine samples. The pur-

pose of this analysis is to reduce the likelihood of inflight arrhythmias
and to further investigate the causes of body potassium loss during space

flight. The following sources of error were observed in conducting this

analysis :

a. When a conflict arose between logging and drinking, the crew

chose to drink without logging the quantity and tried to estimate the

consumed fluid later.

b. Personal estimates of the quantity of water from the drink gun

were very unreliable.

c. The amount of water delivered from the food preparation ports
was not the same because the volume of an ounce of hot water was not the
same as the volume of an ounce of cold water. Gas entrapment further

added to the uncertainty.

d. Apollo urine collection devices have varying amounts of back-
pressure and, when added to the crewman's natural caution, results in
totally unrepeatable results.

One additional difficulty with these procedures occurs during sleep

periods when any attempt to obtain and log data invariably results in
waking the other crewmen.

9.14.6 Physiological and Medical Observations

Fecal collection.- The collection of fecal material is a time-con-

suming and demanding chore which takes between 30 and 45 minutes as a

rule. This operation requires a good bit of room and the total concen-

tration of the participant. The first step is to Velcro all of the nec-

essary equipment within easy reach (scissors, tissues, overwrap, germi-

cide, wipes, and trash bag) and clear an area. The next step is to strip
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completely since the one-piece constant wear garment is not at all com-

patible with this operation. It is advisable to insert the germicide

pouch into the collection bag at the start. The sticky seal is indispen-
sible. It should also be kept in mind that urine will be collected with

each fecal sample. Cleanup operations would be greatly enhanced with a

mirror. The present collection bags are marginal in size if very many
tissues are required. This problem is aggravated by a diet which results
in loose stools.

Another problem is the requirement to physically break the germicide

pouch inside the filled collection bag. This requires a great deal of

pressure in an environment where one would rather not have to exert any
more force than necessary since a rupture of the bag or leak around the

seal would not be worth taking much of a risk. It would seem possible
that a bag could be fabricated with the germicide already inside and hav-

ing some form of chemical covering which would be dissolved by the fecal
material. The finger cot must be pulled out prior to use and it does not
help in clean-up.

A Skylab fecal stowage bag was used to collect the sample bags. This

required constant venting through the waste vent system to keep odors out

of the cabin. Unfortunately, the scientific instrument module bay opera-
tions prohibited doing this as often as desired. Retaining the bags

through the cabin depressurization poses additional concern, since these

collection bags are all packed at 5 psi. The possibility of having to

live with a ruptured bag in a closed environment is disturbing. This ma-

terial should be removed from the cockpit at every opportunity.

The stowage transfer lists call for jettisoning some of the unused

fecal bags. The crew elected to retain these in light of their high us-
age and in consideration of the even higher usage which might be incurred
should someone develop diarrhea or vomiting.

Personal hygiene.- The basic list of personal hygiene equipment is
complete with the exception that no soap is provided.

Urine collection and removal.- The operation of the scientific in-
strument module experiments dictates that urine be stored onboard and

dumped only at selected times. An additional requirement for Apollo 16
was that a one-day urine sample was to be collected and returned. The

Gemini bags, used in conjunction with an emergency water/urine bag for
stowage, worked well for this purpose.

The procedure for urine dumps specifies that the dump lines be purged
for approximately 5 minutes. The crew understood that the purge should be

conducted until the particles ceased to appear outside, but not less than

5 minutes. During this mission, it consistently required purges on the

order of 15 to 20 minutes for the particles to stop.
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The urine receptacle assembly was used three times during the mis-

sion because of scientific instrument module constraints; however, the

Gemini bag is a cleaner procedure because the vacuum on the urine recep-

tacle assembly is insufficient to prevent a bubble from forming around
the cap, even when left on vent for approximately 15 minutes.

Physiological impressions.- With the lunar module attached, reaction

control system activity is recognized by the sound of thruster impinge-

ment on the lunar module skin and the sound of structural bending and
skin "oil canning.." The vehicle dynamic response to maneuvers is charac-

terized by a gre_ deal of flexing and pulsing. With time, the crew be-

comes attuned to the sensation of the reaction control system firings and
there is a slight momentary sound as the engine is fired. The Command

Module Pilot felt that the sound of a continuously firing thruster would
not attract a cre_nuan's attention unless the iLmar module were attached.

Orientation.-- One frequently asked question is "Do you have any sen-

sation of being _)side down?" There were several times during the mission
when the command raodule would appear to be in a stable II attitude. These

instances seemed to follow periods in the lunar module and in the tunnel

area with the head in the minus-X direction. There seemed to be a natural

preference for the orientations used in training even though they were not

the most efficient. On the other hand, the spacecraft orientation with re-

spect to external objects was never annoying.

The Command Module Pilot had occasional problems with target acquisi-

tion looking in the retrograde direction. This was possibly due to the
fact that this orientation provides the minimtmL surface field of view in

the anticipated target area. This orientation is exactly opposite from
the normal search mode.

Physical fatigue and slee_.- The Command Module Pilot felt that the

flight of Apollo ].6was less fatiguing than the preflight preparations.

In fact, he was considerably more rested on the final day of the mission

than on launch day. He slept soundly and continuously on only two nights,

the first solo d_ _ in lunar orbit and the night following transearth in-

jection, but he never felt sufficiently tired to be able to go to sleep.
The sleep obtained during the other nights could, at best, be classified

as intermittent. Terrestrially, the Command Module Pilot averages about

6 1/2 hours of sleep per night and is generally physically tired when go-
ing to bed. Seconal was not used by the Command Module Pilot. Qualita-

tively, the Command Module Pilot feels that zero-g had no effect on his

ability to sleep _mless the attendant lack of _scular fatigue is in-
volved. The Comm_md Module Pilot could recall no dreams.

The only eye fatigue experienced by the Command Module Pilot was a

very noticeable eye strain resulting from observation of the lunar sur-

face with sunglasses during the first two days in orbit. The eye strain
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noticeably reduced on subsequent days and eventually allowed comfortable

viewing of the moon without sunglasses.

The ultraviolet attenuator was kept in place throughout the mission

except when the metal window shades were used or when the cardboard shield

was in place during the ultraviolet photography experiments.

A continuing problem in spaceflight is the requirement to view scenes

with significantly different illumination levels. For example, looking

outside the cockpit and then reading instruments inside.

Exercise.- As a rule, one 30-minute period per day was accomplished.

The most severe limitation associated with the exercises is the inability

to remove the heat generated both in the exercise device and the crewman.

In order to minimize this problem, the exercises tended to be the isomet-

ric types and the Command Module Pilot generally felt better at the con-

clusion of an exercise period.

Adaptation to spaceflight environment.- Adaptation to zero-g and sub-
sequent readaptation to one-g were immediate and very natural. The zero-g

environment can best be described as exhilarating. The one lingering nui-

sauce of the zero-g environment is that the sinuses never stay clear for

very long.

Operation and movement within the cockpit, even when totally dark,

was no problem.

Previous crews have commented on pains in the lower back. The Apollo
16 Command Module Pilot felt none of these.

Stress.- The Command Module Pilot was under more than the desired

amount of physical and emotional stress during the final phases of pre-

flight preparation. Since the flight itself was rather hectic, this ap-

pears to be an undesirable situation. Some of the _factors responsible
were :

a. The one-month launch postponement resulted in a new lunar orbital

flight plan which had to be completed by working evenings until one week

prior to launch.

b. The Command Module Pilot demonstrated an elevated Bilirubin level

during the physical given two weeks prior to flight. It was the Command

Module Pilot's impression that this was an indication of impending hepa-

titus. The effects of this type of stress are quite real in view of the

replacement of a crewmember for medical reasons on Apollo 13.

c. The prelaunch quarantine is based on sound principles; however,

it must be flexible enough to accomodate some relief from the work atmos-

phere of living in the crew quarters and simulation facility.
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Medical aspects.- Changeout of the biosensors in flight generally re-

quired 20 minutes and should be undertaken only on a non-interference basi,_
in lunar orbit. Attention to sensor problems should be delayed until the

next scheduled sensor maintenance period. The use of felt-tip pen mark-

ings on the skin saved considerable time in sensor replacement by making

the positioning very simple.

....Frequent and loose bowel movements plagued all crewmen and consti-
/

tuted a major problem. Although the inflight diet may be the primary fac-

tor, the adoption of a low-residue prelaunch diet might have minimized thi_

problem.

The crew made a conscious effort throughout the flight to drink fluids

as often as possible in an attempt to minimize the possibility of becoming

dehydrated.

Beginning with Apollo 15, the spacecraft have been purged of all trace-

able amounts of nitrogen through repeated cabin depressurizations. In the

belief that maintaining some trace amounts of nitrogen is desirable, the

crew did not vent the nitrogen from the command module side hatch counter-
balance bottle into the cabin until after the lunar module was jettisoned.

9.3-4.7 Skylab Equipment and Experimental

Gas/Water Separator Evaluation

Three Skylab contingency fecal bags were evaluated during the mission.

All comments concerning the Apollo bag apply to this one as well. In ad-

dition to the shortcomings of the Apollo bag, the proposed Skylab bag has
several other undesirable features. The stiff reinforcement around the

open end, while helping with positioning, prevents obtaining a gas-tight
seal when it is closed and introduces additional bulk into the overbag.

The addition of the Velcro strap is superfluous.

Several Skylab food packages were evaluated and photographically doc-

umented during one meal. The use of cans arolmd the plastic bags contain-

ing rehydratable foods presented several PrOblems in the Apollo environ-
ment. The cans represented two additional nonproductive pieces of trash

per item. The tear-off tops have very sharp edges which aggravate the

waste stowage problem and pose a potential safety hazard. One crewman re-

ceived a very deep cut during the preflight evaluation by inadvertently

running his thumb along the torn edge of the can top. The bags used in
these cans have no feed port but, rather, a single water valve in the cen-

ter. The use of this bag requires cutting the valve off, thus providing

an opening for access to the food. The problem encountered was that in

zero-g, the food wets the entire inner surface of the bag so that the crew-

man is trying to cut into the middle of a bubble. This is very messy.
Germicide tablets are hard to retain in open cans.
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Peaches with syrup were packaged in a can with no interior bag. As
soon as the top of the can was cracked open, peach syrup spewed out. These
peaches had been packaged at 14.7 psi.

An accordian-type Juice bag was evaluated. This bag has many useful
features including a shut-off valve which can be actuated with the crew-
man's teeth. This feature allows the crewman to pause during drinking
without losing the fluid. Unfortunately, all of these valves leaked.

A redesigned gas/water separator was to be evaluated. The unit ap-
peared to have an excessive back pressure since no water came out of the
outlet, but did come out around a crack in the inlet side (sec. 14.B.3).
The unit was not examined for damage prior to attempted use_ therefore,
the origin of the crack was unknown. This unit was not delivered in suf-
ficient time to be checked out with the spacecraft water system before
fllght.

9.14.8 Meals and Food Preparation

Meal_____s.-A definite learning curve is apparent in preparing and eat-
ing a meal in flight. Initially, over an hour of constant activity was
required to prepare a meal, whereas, later in the flight, all three crew-
men were able to complete a meal in about 30 minutes although no more
than l0 minutes of this time spent in actual eating.

The first lesson learned was that, rather than having each crewman
handle his own meal preparations and cleanup, it was far more effective
to set up an assembly llne. The best method was to have only one person
in the lower equipment bay while the others remained in the couches. The
Command Module Pilot would cut open the meal packages and sort out the
meals into those items requiring hot water, those requiring cold water,
and the nonrehydratables. He would then cut open the water inlet valves
and pass those requiring cold water to the Commander, who would handle the
hydration. While the cold items were being hydrated, the Command Module
Pilot would cut open the valves on the hot water items. These items
would then be hydrated by the Commander. The Lunar Module Pilot would
get out the accessory items such as a trash bag, the tissues, the germi-
cide tablets, and then help with the food mixing. Upon completion of
the hydratlon, the Command Module Pilot would cut open the eating ports.
Then, everyone would eat and clean up together.

It generally was best to have an intermediate size trash bag avail-
able at mealtime and, when full, empty it into the Jettison bag. In or-
der to minimize the trash volume, a little extra time was taken to elimi-
nate as much gas as possible from the bags prior to throwing them away.
The volume of trash generated from a meal was several times greater than
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the unopened meal package. In summary, the eating periods require a full-

time occupation of the entire crew. Eating in parallel with other activi-
ties always took longer.

Food preparation station.- Some learning was required in the use of

the food preparation station water dispensers in order to obtain consis-

tent results. The cold water dispenser required a little more patience
than did the hot water dispenser. If a short time was taken between the

time the cold water plunger snapped in and the time it was cocked for a

subsequent shot, the quantity of water delivered more closely approxi-

mated that delivered from the hot water port.

Gas was not a nuisance until the third day. At that time, the gas
quantity approached 50 percent in the hot water and something less in the

cold water, with gas production apparently greater if the water dispenser

plunger was actuated at a rapid pace. The cigar-shaped gas separator was
installed and, after purging, seemed to work for the remainder of the mis-

sion. The gas separator would always form a large bubble on the outlet

end when the plastic cap was left off. When the cap was used, there was

no problem with dripping or bubble formation. The hot water is very hot
when it comes out and the hot water capacity was never exceeded.

Food and equipment.- The only problem with the hot water foods was

that they cooled quite rapidly while being mixed. The wet packs need

some method of warming to make them palatable. While the cold wet packs

were not very appetizing, they were eaten because the crew felt that they
needed solid foods in their diet.

The crewmen were not too successful in closing the Juice bag feed
ports by pinching, once drinking had started. If the feed tube was folded

up, it would make a good seal; however, that took more time than Just fin-
ishing the drinks.

The spoon bowl packages worked quite well. The only ones that pre-

sented a problem were the very thin packages _such as tomato soup and lob-

ster bisque. The wetting action of these liquids would cause the fluid
to form a bubble around the opening. The bubble would start to form as

soon as the package was opened. If the package was opened wide, the bubble

formation was minimized. The only practicable disposal method with most
foods was to eat the entire quantity.

The wet wipes included with each meal were not very wet and were too

small to be of much help. Their use always required the supplementary
use of a towel.

The drinks, except for the coffee, have a very similar taste. One

of the most satis_>ing thirst quenchers was the water directly from the
gun.

i
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The heat seals on several of the cocoa bags prevented water, intro-

duced through the valve, from reaching the food area.

9.14.9 Liquid Dumps

Exit plume patterns.- None of the command module dump nozzles are
visible from within the cabin. The hatch nozzle is approximately 6 in-

ches beyond the limit of visibility out the window. The one opportunity

to view a nozzle during a dump came during the first lunar orbit rendez-

vous when a waste water dump was performed while the command and service

module was stationkeeping with the lunar module. The lunar module crew
observed that the effluent sprayed out at an apparently high velocity

with the cone angle remaining quite small and definite out to several
feet from the nozzle. During the dump, the Commander observed an icicle

form on the nozzle and then dissipate. A definite translation was im-

parted to the command module as a result of this dump. This particular

dump appeared to be like a very heavy rain. Individual particles are not
distinct. When the dump valve is closed, the velocity of the particles

rapidly diminishes; however, the apparent particle density remains con-
stant for a considerable time. As the exit velocity slows, the individ-

ual particles become obvious and appear more like snowflakes.

During transearth coast, a 5-pound bag of water was dumped through

the auxiliary side hatch nozzle using the cabin pressure to expel the

fluid. This provided a direct comparison of urine and water dumps under

identical pressures. The heater was turned on approximately I0 minutes

before the dump was to begin. However, as soon as the dump was started,

the nozzle apparently froze. The quick disconnect was removed and the

inlet was exposed to the cabin atmosphere for several minutes when it once

again started to flow. The water line was reconnected and the bag was

emptied with no further difficulty.

A great deal of time was spent observing the characteristics of these

dumps. The crew looked for evidence of curved tracks and returning par-

ticles. The only time particles were observed to change direction was

when they bounced off the lunar module or collided with a particle which
had bounced off the lunar module. While following the transearth coast

dump photography, an area of increased luminosity was observed when look-

ing down-sun along the dump vector. Urine dumps did not differ in appear-
ance from waste water dumps; however, the velocity of the particles ap-

peared lower and, therefore, the individual particles were more apparent.
There is no detectable color difference.
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9.14.10 Mass Measurement in Zero-Gravity

This experiment was executed but not documented because of the time

required to assess the inertial subsystem alarms on the day prior to en-

try. The scheme was to use a spring to accelerate a mass across a grid

while photographing the translation with the 16-mm data acquisition cam-

era. The experiment was dynamically evaluated in flight, but not photo-

graphed because Of poor lighting. A qualitative observation was that,

with very little practice, the mass could be smoothly accelerated with
little or no rotation, indicating relatively stable and repeatable ini-
tial conditions.

9.15 CREW EVALUATION OF THE MISSION

Despite the decision to return a day early and the delay in the lu-

nar landing, most major objectives were successfully completed. The suc-

cess was made possible, primarily, because both the flight crew and Mis-
sion Control Center teams were very familiar with the mission plan.

In spite of the delay in landing, all orbital items scheduled for

the day of powered[ descent were accomplished except tracking of the landed

lunar module and a strip of earthshine photography.

The first full day of solo operations went quite smoothly until the

effects of resche_ling the plane change maneuver and retaining the lunar

module after rendezvous began to surface. From this point on, the Command

Module Pilot never had the full grasp of the "big picture". As the mis-

sion progressed, the flight crew was backed into a posture of only re-

sponding to the Mission Control Center requests, and had the disturbing
sensation of just hanging on.

Changing the lunar module jettison time resulted in getting the crew

to sleep at the s_me time as the original timeline and created quite a bit

of confusion the following day because of the interdependency of space-

craft stowage, timeline execution and experiment performance.
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Elapsedtime Day 1 Elapsedtime Day
_10 STDN Cisluna_navigation Night • _lq--15STDN Sl, pNight

B

m

_11 -- --22

-- Platform realignment
Fuel celJ purge (oxygen)

Crew exercise --
/

-- Waste water dump / --
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115 -- 126 -- --

(b) i0 to 26 hours.

Figure 9-i.- Continued.
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(e) 26 to 36 hours.

Figure 9-i.- Continued.
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(e) 51 to 66 hours.

Figure 9-1,- Continued.
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Figure 9-i.- Continued. I
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lO.0 BIOMEDICAL EVALUATION

This section summarizes the medical findings based on a preliminary

analysis of the biomedical data. A total of 797 1/2 man-hours of space-

flight experience was accumulated during the ll.-day mission. The flight
crew health stabilization program implemented on this mission was similar

to that used for Apollo 15, except for the addition of a control group.
The crewmen remained in good health throughout the mission.

10.1 BI0_DICAL INSTRUMENTATION AND PHYSIOLOGICAL DATA

The quality of the physiological data obtained throughout the mis-

sion was good. The infrequent degradations of physiological data were

caused by loose biosensors, with restoration of good data upon reappli-

cation of the sensors. Physiological data losses resulting from trapped
air under the elec_rodes were not experienced on this mission because
the electrodes were modified with small vents.

All physiological measurements were within expected ranges. The

crew heart rates _Aring launch ranged from 77 to 125 beats per minute.

The heart rates of the Commanders a veteran of three space flights, were

generally lower th_l those of the other two crewmen, who had not flown

previously. The Commander's heart rates ranged from 70 to 104 beats per

minute during lunar descent and from 80 to 105 beats per minute during
lunar ascent (figs. 10-1 and 10-2). The metabolic rates of the Commander

and Lunar Module Pilot during the three lunar surface extravehicular per-

iods were correlated with the heart rates (figs. 10-3 through 10-5). A

summary of the average metabolic rates and averaged heart rates for the
four periods of extravehicular activity is presented in table 10-I.

The Command _dule Pilot's relatively high heart rate (table 10-I)

during the transearth extravehicular activity was attributed to excite-

ment rather than high workloads or cardiovascular decondltioning. Post-

flight exercise tolerance tests on the Command Module Pilot showed only
minor cardiovascular deconditioning and verified that the high heart rate

was Caused by excitement rather than cardiovascular conditioning.

Table 10-II shows that the prelaunch metabolic rate predictions for

lunar surface activities were slightly lower than the actual values meas-

ured. The metabolic rates were higher for the Lunar Module Pilot.
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TABLE i0-I.- AVERAGE HEART AND METABOLIC RATES

DURING EXTRAVEHICULAR ACTIVITIES

Metabolic

Heart rate, Rate,

Activity beats/min Btu/hr

First extravehicular activity

Commander 84 872

Lunar Module Pilot 101 lO13

Second extravehicular activity

Commander 84 784

Lunar Module Pilot 84 827

Third extra,vehicular activity

Commander 86 815

Lunar Module Pilot 87 825

Transearth extravehicular activity

Commander (a) (a)

Lunar Module Pilot (a) (a)

Command Module Pilot 120 <2200

aNo data
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TABLE lO.II.- ACTUAL OBSERVED METABOLIC RATES (BTU/HR)
COMPARED WITH PREDICTED

Metabolic rates, Btu/hr

Commander Lunar ModuLe Pilot Both crewmen
Lunar surface activity

Premission Premlssion Premission
Actual Actual Actual

prediction prediction prediction

Lunar roving vehicle traverse 508 550 _54 550 h82 550

Geological station activities 889 950 982 950 936 950

Overhead 987 1050 1023 1050 1006 1050

Apollo lunar surface experi-

ments package activities 823 950 1024 950 924 950

All activities combined 818 907 901 907 859 907

n° i
Power -- i' Lunar

i descent /_ ii landingi

100 _initiation-- i
E

"F=

/80 _ _'_

70 i I !

60 il i
i04:17 104:19 104:21 104:23 104:25 i04:27 I04:29 104:31 104:33 104:35

Time, hr:min

Figure 10-1.- Heart rates of Commander during lunar descent.
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Ii0
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Figure i0-2.- Heart rates of Commander during lunar ascent.

i0.2 MEDICAL OBSERVATIONS

10.2.1 Adaptation to Weightlessness

Shortly after earth orbital insertion, two crewmen experienced the

typical fullness-of-the-head sensation that has been reported by all pre-
vious flight crews. This sensation lasted for several hours. The Command

Module Pilot did not experience this sensation. No redness of the face

was observed by the crew and all three crewmen adapted rapidly to weight-

lessness and did not experience any giddiness, nausea, vomiting, or dis-
orient at ion.

10.2.2 Medications

The Lunar Module Pilot used three 100-milligramSeconal capsules for

sleep induction during the mission. One capsule was taken on the night

prior to lunar descent and the other two capsules were used for the first

and second lunar surface sleep periods, respectively. In the postflight
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medical debriefing, the Lunar Module Pilot reported that the Seconal was

effective in producing a rapid onset of good sleep. The only other item
from the medical kits used by the crew was skin cream to reduce irrita-
tion at the biosensor sites.

10.2.3 Sleep

In contrast to the Commander's Apollo I0 experience, he slept well

during all the scheduled sleep periods. Typically, the Commander's sleep
was uninterrupted for 4 to 5 hours after which he would awaken, get a

drink of water, and return to sleep for the rest of the night. The Lunar

Module Pilot slept well during all sleep periods except the first. How-

ever, the Command Module Pilot reported that he slept uninterrupted only

two nights of the mission and, characteristically, would awaken about once

every hour. He also stated that he never felt physically tired nor had

a desire for sleep.

On this mission, displacement of the terrestrial sleep cycle ranged

from 30 minutes to 5 hours during translunar coast, and from 3 1/2 hours

to 7 hours during the three lunar-surface sleep periods. This shift in

the sleep cycle on the lunar surface contributed to some loss of sleep;

however, this was the first mission in which the lunar module crewmen ob-

tained an adequate amount of good sleep while on the lunar surface. This
assessment of the amount of sleep is based on a correlation of heart rate

during the mission sleep periods with preflight sleep electroencephalo-

grams and heart rates. The estimates of sleep duration made by ground

personnel were in general agreement with the crew's subjective evaluations.

10.2.4 Radiation

The personal radiation dosimeters showed the total absorbed dose to

the crew was approximately 0.5 rad at skin depth. This is well below the
threshold of detectable medical effects.

This was the first Apollo mission in which three minor solar flares

occurred. Althoug_h the nuclear particle detection system registered a

slight increase in proton and alpha particle fluxes, no measureable ra-
diation dose increment was received by the crew from these flares.

i0.2.5 Cardiac Arrhythnn'Las

Both Apollo _K5 lunar surface crewmen demonstrated cardiac arrhythmias

(irregularities) :following completion of their extravehicular activities.

Laboratory data obtained after the flight showed a significant decrease in

exchangeable body potassium levels. This deficiency of body potassium was
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considered to be an important factor in the genesis of the Apollo 15 ar-

rhythmia. As a result of these findings, several changes were instituted

on this mission to reduce the likelihood of inflight arrhythmias and to

further investigate the causes of body potassium loss during space flight.
These changes included the following:

a. A high-potassium diet was instituted, commencing 72 hours prior
to launch and continuing until 72 hours after the mission.

b. A metabolic input/output analysis was made with accurate daily
inflight reporting.

c. Anti-arrhythmic medications (procaine amide, atropine, and Lido-
caine) were provided in the onboard medical kits.

d. A daily high-resolution electrocardiogram was taken from each
crewman.

No medically significant arrhythmias occurred during the mission, but
isolated premature heart beats were observed in two of the three crewmen.

The fact that the frequency (less than one per day) and character of these

prematurities remained consistent with electrocardiographic data obtained

on these same crewmen during ground-based tests clearly indicates that they

were not related to or resultant from space flight. Postflight exchange-
able body potassium levels were normal and indicate that the increased die-

tary potassium intake, discussed in section 10.2.7, apparently was effect-

ive in maintaining a state of normal potassium balance. It is not possible
at this time to equate normal levels of exchangeable body potassium with

suppression of cardiac irritability and prevention of arrhythmias. For ex-

ample, fatigue, stress, or excitement can also produce arrhythmias. The
absence of arrhythmias on this mission can best be attributed to a combina-

tion of factors, such as high dietary intake of potassium, better fluid and

electrolyte balance, more adequate sleep, and less fatigue.

1012.6 Water

The crew reported that the taste of the drinking water in both the

command module and the lunar module was good. The crew experienced dif-

ficulty injecting the chlorinating solution during the third daily water

chlorination in the command module. A small amount of chlorine leakage

occurred and is attributed to a failure of the inner bag of the chlorine

ampule. Section 14.1.7 contains a discussion of this anomaly. The last
two inflight water system chlorinations were not performed because the in-

jection device had been misplaced. Postflight analysis of the command

module water showed an increase in bacterial counts and no free chlorine ;
however, no pathogenic microflora were found.
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The use of the bacterial filter in the lunar module was not required

on the mission because the preflight iodine residual in the potable water

supply was adequate for maintenance of sterility throughout the flight.

The crew reported that there was no dissolved gas in the command mod-

ule water system during the first three days of the mission. Thereafter,

however, sporadic occurrences of gas bubbles, particularly from the hot
water port, were noted. No interference with food reconstitution resulted

from these gas bubbles.

i0.2.7 Food

Menus were designed to provide a minimum of 130 milli-equivalents of

potassium per man per day for this mission. Foods high in natural potas-

sium were selected and some beverages were fortified with potassium glu-

conate. The menus supplied approximately 2600 +i00 kilocalories per man

per day. This value was based on the calculated nutritional requirements
of each crewman.

For the first time on an Apollo mission, a preflight and postflight

control diet was provided to the crew. The purpose of this control diet

was twofold; to insure that each crewman was in an optimum nutritional

state prior to launch, and to facilitate postflight interpretation of

medical laboratory data. The control diet was initiated three days prior

to flight and terminated two days after recovery. In addition, food and

fluid intake was closely monitored during the flight.

Preliminary estimates of the inflight food consumption, based on crew

reports, indicate that an average of 2150, 1408, and 1900 kilocalories per
day were consumed by the Commander, Command Module Pilot, and the Lunar

Module Pilot, respectively. Postflight, the crew commented favorably on

the quality of the food, but stated that they could not consume the quan-

tity provided. They also stated that they had an inadequate amount of

time to prepare and eat their food because the meal periods were contin-
ually interrupted and shortened by other activities.

Six in-suit beverage assemblies were included in the lunar module

food system. Each assembly consisted of a drinking device and a 32-ounce

bag of potassium-fortified orange drink. Several minor problems with the
use of these assemblies were experienced. Inadvertent activation of the

tilt valve by the conm_unications cable or the microphone caused some re-

lease of fluid into the Lunar Module Pilot's helmet prior to lunar land-

ing. Prior to the first period of extravehicular activity, the Commander

installed the in-suit beverage assembly after donning his pressure suit

and could not properly position the assembly. Thus, he was unable to con-

sume any fluid during the first extravehicular activity. The Lunar Mod-

ule Pilot encountered no difficulties and drank 32 ounces of water during
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this time. On the second and third periods of lunar surface activities,

each crewman consumed the fortified orange drink. In-suit food bars were

not used during extravehicular activities.

_ Four different types of Skylab food packages were evaluated for func-
_jl tion under weightless conditions by each crewman. These included a rehy-

dratable soup package, a beverage package, a peanut wafer package, and a

liquid table-salt package. The crew suggested improvements of some of the
Skylab food packages.

10.3 PHYSICAL EXAMINATIONS

Each crewman received a comprehensive physical examination 29, 15,

and 5 days prior to launch, with brief examinations conducted daily during
the last 5 days before launch. Comprehensive physical examinations con-

ducted shortly after landing showed that the crewmen were in good health.

The body weight losses incurred by the Commander, Command Module Pilot,
and Lunar Module Pilot during the mission were 7 1/2, 6 1/2, and 5 1/2

pounds, respectively. All crewmen suffered varying degrees of skin irri-

tation at the biosensor sites. This skin irritation resulted principally

from the crew's desire to wear the biosensor harnesses continuously in or-

der to save the long donning/doffing time (15 to 20 minutes) required.
The skin irritation subsided within 48 hours without medical treatment.

The Co_nander had some sinus congestion which responded promptly to medi-

cation, and also a slight reddening and retraction of the right eardrum.

In contrast to Apollo 15, the crew returned to their preflight base-

line levels in lower body negative pressure measurements and bicycle er-

gometry tests by the third postflight day. The response pattern of these

tests, unlike Apollo 15, was consistent with other Apollo missions.

The lack of a significant decrement in the Command Module Pilot's

exercise performance was a surprising postflight finding. Because of the

high degree of preflight aerobic capacity demonstrated by this crewman,

a significant postflight decrement had been anticipated.

10.4 IMPROVED GAS/WATER SEPARATOR AND FECAL COLLECTION BAG

The improved gas/water separator was not evaluated because a struc-

tural failure of the device allowed water leakage and precluded the unit
from functioning properly. Section 14.3.3 contains a discussion of this

anomaly.
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The improved[ fecal collection bags were evaluated by the crew. The

lap belt and stiffened seat flange were found to offer no particular ad-

vantage over the existing system. The modifications made on the finger

cot did not improve its function.

i0.5 APOLLO TIME AND MOTION STUDY

Analysis of the lunar-surface traverses on level surface and down-

hill produced findings closely paralleling those of Apollo 15. Carrying

of bulky equipment, such as the Apollo lunar surface experiments package,

resulted in a significant increase of metabolic rate. During one of the

long traverses, the metabolic rates were similar, 1112 Btu/hr and 1185

Btu/hr, with one crewman using a conventional walking gait and the other

a hopping gait, respectively.

A comparison of metabolic data from ground-based training tasks and

lunar surface tasks showed that the metabolic rates were about 90 percent

higher during the training sessions. The major contribution to the higher

ground-based metabolic rate is the i00 pounds of extra weight carried by

the crewman. However, the total metabolic cost of the lunar surface tasks

was only l0 percent lower than for ground-based training. The fact that

the lunar surface tasks were spread over a longer period of time accounts
for the small total difference.

10.6 STEREOMETRIC BODY VOLUME MEASUREMENT

Body volume measurements were performed 15 and 5 days prior to launch

and immediately after recovery. The stereophotogrammetric method was used

to obtain front- and back-view stereophotographs of the crewmen. The pho-

tographs were then analyzed to derive the precise displacement of a large

number of coordinates from the body reference plane. The coordinates were

used to compute an exact volume of the three-dimensional image of each
crewman.

Postflight testing showed that the Lunar Module Pilot had a body
volume decrease ,of 2.5 liters and that the Colmnand Module Pilot had a
decrease of 6.9 liters. Unexpectedly, the C_nmander showed no net loss

of body volume even though he was the smallest crewman and had lost the
most weight during the mission. Observation of body density change to-

gether with known caloric deficits would imply that the losses of fatty
tissue predominated in the lunar surface cre_nen, whereas the Command
Module Pilot lost proportionately more body water.
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i0.7 vESTIBULAR FUNCTION TESTS

Vestibular function tests were performed because of the transitory
postfllght vestibular disturbance experienced by one of the Apollo 15
crewmen and to fulfill the need for better quantitative data on the ef-
fects of weightlessness on the vestibular system. Two different types
of tests were performed. The first test evaluated the postural stabil-
ity with and without the aid of vision. All crewmen were within normal

limits during preflight tests. However, three days after recovery, two
ofthe crewmen exhibited a significant decrement when deprived of all
visual sensory cues. Performance was similar to the preflight baseline
when these crewmen were retested one week after landing.

The second test consisted of graphic recording of nystagmus (eye
movement) induced by water irrigation of the right and left auditory ca-
nals. The water used was at temperatures of 3h.0° C and 35.5° C. Two
of the crewmen displayed apparent hypersensitivity of the semicircular
canals during postflight testing, as evidenced by an increase in the fre-
quency of nystagmus and an increase in the slow-phase velocity of caloric-
induced nystagmus. Repetition of this test one week after recovery indi-
cated that these crewmen had returned to normal baseline conditions.
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ii.0 MISSION SUPPORT PERFORMANCE

ii.i FLIGHT CONTROL

Flight control provided satisfactory operational support for all

areas during the _?ollo 16 mission. Ground facility difficulties exper-

ienced during this mission were resolved satisfactorily with no effect
on the mission.

The S-IVB stage, the command and service module, the lunsa• module,

and the lunar roving vehicle all had some systems problems which required

special work-around or management procedures. These problems ranged in

seriousness from a mere nuisance to a potential mission termination prior
to the lunar landing.

The lunar landing was delayed about 5 3/4 hours while resolution of

a service propulsion system problem was obtained. This delay caused a

major impact on the mission timeline; consequently, a new flight plan had

to be developed. The lunar surface portion was relatively easy to define -

the major issue being how many extravehicular activities could be accomp-

lished. The resolution of this question depended on the lunar module con-

sumables analysis and a management decision regarding crew work/rest cy-

cles. Since a third extravehicular activity was available, even though
it was only 5 hours' duration instead of 7, the lunar surface activities

were not greatly perturbed.

The flight plan revision for orbital operations required that planned

activities be moved to different times or orbits. However, since the or-

bital events must occur at specific times, the updating of the crew had

to be accomplished by dictating each specific change. This was a labor-

ious and time conm_uing process. It also required a great deal of time

to prepare the flight plan updates, and in at least two instances, the

updates were not completed in time to allow an adequate review by the

entire flight control team prior to being read to the crew.

A contributing factor to the orbital operations planning difficulties

was the decision to perform transearth injection a day earlier than orig-
inally planned. This resulted in a loss of one day of lunar orbit science

experiment operations, and therefore, major changes were made in the flight
plan to accomplish as many as possible of the higher priority items.
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11.2 NETWORK

The support of the Space Flight Tracking and Data Network was good

for the Apollo 16 mission.

There were three significant communications problems that caused a

loss of data. They were: system failures at Monrovia, Maryland, switch-

ing station prior to lift-off; poor performance of the communications pro-

cessor at Goddard; and the inability of the Jet Propulsion Laboratory 210-

foot Mars station to process lunar module high-bit-rate data when the lu-

nar module was transmitting on an omnidirectional antenna and the con_nand

and service module was transmitting on the high-gain antenna.

During the period between the Apollo 15 and Apollo 16 missions, the

Space Tracking and Data Acquisition Network and the Manned Space Flight

Network (MSFN) were combined into a single network to support both manned

and unmanned flights. The designation of the combined network is the

Space Flight Tracking and Data Network (STDN).

11.3 RECOVERY OPERATIONS

The Department of Defense provided recovery support for the Apollo 16

mission. Recovery ship support for the primary landing area in the Pacific

Ocean was provided by the aircraft carrier USS Ticonderoga. Air support

consisted of five SH-3G helicopters and one E-IB aircraft from the primary

recovery ship, and two HC-130 rescue aircraft staged from Hickam Air Force

Base, Hawaii. Three of the SH-3G helicopters carried recovery swimmer

team personnel. The first, designated "Recovery", also carried the flight

surgeon and was used for both command module and flight crew retrieval op-
erations. The helicopter, designated "Swim", served as a backup to "Re-

covery". The third helicopter, designated "ELS" (earth landing system),

was used for retrieval of the main parachutes. A fourth helicopter, des-

ignated "Apex" was used for drogue parachute and apex cover retrieval op-

erations. The fifth helicopter, designated "Photo", served as a photo-

graphic platform for both motion picture photography and live television

coverage. The E-IB aircraft, designated '_elay", served as a communica-

tions relay. The two HC-130 aircraft, designated "Hawaii Rescue i" and
'_awaii Rescue 2", were positioned to track the command module after it

had exited from S-band blackout, as well as to provide pararescue capa-

bility had the comand module landed uprange or downrange of the target

point. Figure ii-i shows the relative positions of the recovery ship,

its aircraft, and the two HC-130 aircraft prior to landing. The recov-

ery forces assigned to the mission are shown in table ii-I.
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TABLE ll-I .- APOLLO 16 RECOVERY SUPPORT

Type Number Ship name/
aircraft staging base Responsibility

ARS 1 USS Opportune Launch site area and sonic
boom measurements

MSO 1 USS Alacrity Sonic boom measurements

MSO 1 USS Exploit Sonic boom measurements

DD 1 USS Goldsborough Earth orbital target points

(Standby in Pearl Harbor)

AO 1 USS Ponchatula Refuel USS Ticonderoga and
sonic boom measurements

CVS 1 USS Ticonderoga Deep-space secondary landing
areas in the mid-Pacific and

the primary end-of-mission

landing area

Aircraft

HH-53C 2a Patrick Air Force Base Launch site area

HC-130 Ia Eglin Air Force Base Launch abort area and West

Atlantic recovery area

HC-130 ia Pease Air Force Base Launch abort area and West

Atlantic recovery area

HC-130 ia Lajes Air Force BAse Launch abort area and contin-

gency landing support

HC-130 ia Ascension Island Deep space Atlantic Ocean sec-

ondary recovery zone

HC-130 2a Hickam Air Force Base Mid-Pacific earth orbital re-

covery zone, deep space sec-

ondary landing area on the

mid-Pacific line and primary

end-of-mission landing area

SH-3G 5 USS Ticonderoga Deep space secondary landing
area and primary end-of-mission

landing area

E-1B 1 USS Ticonderoga Communications relay for pri-

mary end-of-mission landing
ar e a

aPlus one backup.
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ii ._3.1 Command Module Location and Retrieval

Radar contact with the command module was made by the Ticonderoga

at 1934 G.m.t with a visual sighting of the command module occurring 5

minutes later. This initial sighting was prior to apex cover jettison;

thus, the entire descent sequence was observed. Shortly after the main

parachutes were deployed, two-way voice comm_mications were established

between the Apollo 16 crew and the recovery forces. Table ii-II is a

chronological listing of events during recovery and post-recovery opera-
tions.

Landing occt_rred at 1945 G.m.t. Based upon a navigation satellite

(SRN-9) fix obtained at 1916 G.m.t., the Ticonderoga's position at the

time of landing was determined to be 0 degrees 46 minutes 30 seconds south

latitude and 156 degrees 12 minutes 12 seconds west longitude. Using this

fix of the ship's position along with visual and radar bearings and ranges
to the command module, the landing point coordinates of Apollo 16 were

determined as being at 0 degrees 44 minutes 18 seconds south latitude and

156 degrees 14 r_nutes 6 seconds west longitude.

The command module landed in the stable I attitude and immediately

went to the Stable II (apex down) flotation attitude. Uprighting to the

Stable I attitude required approximately fotu" and one-half minutes. Swim-
mers were deployed to the command module and had the flotation collar in-

stalled and inflated by 2000 G.m.t. The crew were delivered aboard the

USS Ticonderoga 22 minutes later.

Command module retrieval occurred at 2124 G.m.t. when the spacecraft

was lifted aboard the Ticonderoga. In addition, all three main parachutes
were recovered.

The crew remained aboard the Ticonderoga about 21 hours for a medi-

cal checkup after which they were flown to Hickam Air Force Base, Hawaii.

After a brief welcoming ceremony, a C-141 aircraft flew them to Ellington
Air Force Base, Texas.

The command module arrived at North Island Naval Air Station, San

Diego, California, on May 5 at 2400 G.m.t. On May 7, while removing the

propellants from the command module, an explosion occurred in the ground

support equil_ment. Section 14.1.20 gives additional information. The
command module was not damaged and was delivered to the prime contractor

at Downey, California, on May 12 at 1030 G.mot., for postflight testing.

f
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TABLE ll-II.- SIGNIFICANT RECOVERY POSTRECOVERY EVENTS

Time relative

Event Time, G.m.t. to landing

day:hr:min

April 27, 1972

Radar contact by Ticonderoga 1934 -0:00 :Ii
Visual contact 1939 -0 :00 :06

VHF recovery beacon contact by 1940 -0:00:05

Ticonderoga

Voice contact with Apollo 16 1941 i0:00:04

Command module landing 1945 0:00:00

Swimmers deployed to command module 1950 0:00:05
Flotation collar installed and 2000 0:00:15

inflated

Hatch opened for crew egress 2004 0:00:19

Flight crew aboard helicopter 2016 0:00 :31

Flight crew aboard Ticonderoga 2022 0:00 :37

Command module aboard Ticonderoga 2124 0:01:39

April 29, 1972

First sample flight departed Ticonderoga 1145 1:16:00

First sample flight arrived Hawaii 1414 1:18:29

First sample flight departed Hawaii 1503 1:19:18
Flight crew departed Ticonderoga 1730 i :21 :45

Flight crew arrived Hawaii 1921 1:23 :36

Flight crew departed Hawaii 2007 2:00:22
First sample flight arrived Houston 2232 2:02:47

April 30_ 1972

Command module arrived Hawaii 0330 _ 2:07:45

Flight crew arrived Houston 0340 2:07:55

May i _ 1972

Command module departed Hawaii 1800 3:22 :15

May 5_ 1972

Command module arrived North Island, 2400 8:04:15

San Diego, California

Ms_v ii_ 1972

Command module deactivated 2400 14:04:15
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TABLE ii-II.- SIGNIFICANT RECOVERY POSTRECOVERY EVENTS (Concluded)

Time relative

Event Time, G.m.t. to landing

day :hr :rain

May 12, 1972

Command module departed San Diego 0300 14 :07:15

Command module arrived Downey 1030 14:14 :45

ii.3.2 Postrecovery Inspection

Visual inspection of the command module in the recovery area revealed

the following :

a. Three of the ground-plane whiskers on the number two VHF recovery

antenna and one ground-plane whisker on the number one VHF antenna were
bent.

b. There were small sections missing out of the aft heat shield in

the plus Y and plus Z quadrants.

c. There were minor rips in one of the sleep restraint bags and in

the back pan of •the center couch.
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i;._.0 ASSESSMENT OF MISSION OBJECTIVES

Three primary mission objectives were assigned to the Apollo 16 mis-
sion (ref. 5). _lese were:

a. Perform selenological inspection, survey, and sampling of mate-

rials and surface features in a pre-selected area of the Descartes region.

b. Emplace and activate surface experiments.

c. Conduct in-flight experiments and photographic tasks.

Table 12-I includes the eleven detailed objectives which were derived

from the primary objectives plus twenty-five experiments (ref. 6) which

were conducted. ]Preliminary analysis of the experiments and detailed ob-

Jectives indicates a successful mission with a weighted completion average

of greater than 9(9 percent. Loss of the heat flow experiment was the only
prime los s.

The Department of Defense and the Kennedy Space Center performed
seven other tests which are as follows:

a. Chapel Bell (classified Department I of Defense test)

b. Radar skin tracking

c. Ionospheric disturbance from missiles

d. Acoustic measurement of missile exhaust noise

e. Army acoustic test

f. Long-focal-length optical system

g. Sonic boom measurement.
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TABLE 12-1.- DETAILED OBJECTIVES AND EXPERIMENTS

Description Completed

Detailed Objectives

Service module orbital photographic tasks Yes

Visual light flash phenomenon Yes

Command module photographic tasks apartial
Visual observations from lunar orbit Yes

Skylab contamination study _P_rtial
Improved gas/water separator No

Body fluid balance analysis Yes

Subsatellite tracking for autonomous navigation aNo

Improved fecal collection bag Yes

Skylab food package Yes
Lunar rover vehicle evaluation Yes

Crew-Participation Experiments

Lunar geology investigation (S-059) Yes
Heat flow (S-037) CNo

Lunar surface magnetometer (S-034) Yes __
Passive seismic (S-031) dpartial

Active seismic (S-033) epartial

Far ultraviolet camera/spectroscope (S-201) Yes

Solar wind composition (S-080) f Yes
Soil mechanics (S-200) Partial

Portable magnetometer (S-198) Yes

Cosmic ray detector (sheets) (S-152) gPartial
Gamma-ray spectrometer (S-160) Yes

X-ray fluorescense (S-161) Yes
Subsat ellite :

S-band transponder (S-164) Yes

Particle shadows/boundary layer (S-173) Yes

Magnetometer (S-174) Yes
Down-link bistatic radar observations of the moon (S-170) Yes

S-band transponder (CSM/LM) (S-164) Yes

Alpha particle spectrometer (S-162) Yes

Mass spectrometer (S-165) Yes

Ultraviolet photography-earth and moon (S-177) apartial

Gegenschein from lunar orbit (S-178) Yes

Microbial response in space environment (M-191) Yes
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TABLE 12-I.- I)_AILED OBJECTIVES AND EXPERIMENTS - Concluded

Des cript ion I
Completed

Passive Experiments

Bone mineral measurement (M-078) Yes

Biostack (M-211) Yes

Apollo window meteoroid (S-176) Yes

Operational Tests

Lunar module voice and data relay Yes

Inflight Demonstration

Fluid electropho:resis in space ]

m

Yes

a .

_Tlmellne ch_ages caused data loss.

DSeparator failed before it could be evaluated.
c
_Electronlcs package cable broken.
-No lunar mod uile ascent stage impact.
e
^The fourth mortar wlll not be fired.

No trench dug - tlmellne.

gPartial deployment of panel 4.
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13.0 LAUNCH PHASE SUMMARY

13.1 WEATHER CONDITIONS

The weather conditions at the launch site and in the surrounding

areas on the day of launch were gently southwesterly winds extending from
the surface to an altitude of 25 000 feet. The main weather feature was

a ridge of high pressure extending from the Atlantic westward over Florida.

Broken strato-cumulus clouds were present in the early morning, but the
skies were clear by mid-morning with scattered cumulus clouds noted about

ii a.m, The surface temperature was 88° F with the maximum winds of 41
knots from 270 ° azimuth at 39 000 feet.

13.2 ATMOSPHERIC ELECTRICITY

Lightning strikes were recorded on March 5 and March 31 on the launch

umbilical tower and mobile service structure of launch complex 39. No

damage was noted in the spacecraft or associated ground support equipment
as a result of these strikes.

13.3 LAUNCH VEHICLE PERFORMANCE

The perform_u_ce of the ninth manned Saturn V space vehicle, AS-511,

was satisfactory and all objectives were accomplished except the precise
determination of the S-IVB stage lunar impact point and time.

The ground systems supporting the launch vehicle portion of the

Apollo 16 countdown and launch performed satisfactorily with no unsched-

uled holds. Propellant tanking was accomplished satisfactorily. Damage

to the pad, launch umbilical tower, and support equipment was minimal.

The vehicle was launched on an azimuth 90 degrees east of north. A

roll maneuver was initiated 12.7 seconds after range zero and the vehicle
was placed on a flight azimuth of 72.034 degrees east of north. The tra-

jectory parameters from lift-off to command and service module separation
were nominal. Earth-parking-orbit insertion conditions were achieved at

the planned altitude, but 0.72 second later than planned, and at a veloc-

ity of 0.2 meter per second greater than planned. Translunar injection
conditions were achieved 1.78 seconds earlier than planned with altitude

and velocity 2.0 kilometers less than planned mad 1.9 meters per second

/
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greater than planned, respectively. The trajectory parameters at command

and service modul@ separation deviated somewhat from planned since the

event occurred 38.6 seconds later than predicted.

All S-IC propulsion systems performed satisfactorily and performance

was very close to predicted. Likewise, the S-II propulsion systems per-
formed satisfactorily throughout the flight with all engine performance

parameters near the predicted values. However, during the S-If engine
start transient, an unusually large amount of helium was expended from

the engine 4 helium tank. The most probable cause of the anomaly is slow

closing of the engine purge control valve allowing excessive helium to be
vented overboard. Tests, analysis, and examination of valves from ser-

vice are being conducted to determine the cause and solutions for engines

on subsequent stages. The accumulator system was effective in suppressing

POGO-type oscillations.

The S-IVB propulsion system performed satisfactorily throughout the

operational phase of the first firing and had normal start and cutoff

transients. Firing time for the first S-IVB firing was 142.6 seconds,
0.4 second longer than predicted. Engine restart conditions were within

specified limits, and restart, at the full-open position of the mixture

ratio control valve, was successful. The firing time for the second S-IVB

firing was 341.9 seconds, 2.4 seconds less than predicted. This differ-

ence is primarily due to the slightly higher S-IVB performance and lighter -

vehicle mass during the second firing. Auxiliary propulsion system module

1 experienced an external helium leak which started at about 1 hour and

continued to 06:20:00. The maximum leak rate experienced was 585 psi/hour.

The other module 1 systems functioned normally. Auxiliary propulsion sys-

tem module 2 experienced internal leakage from the high pressure system

to the low pressure system during the flight. The regulator outlet pres-

sure began to increase above the regulator setting at approximately 970

seconds. The pressure continued to increase to 344 psia, the relief set-

ting of the low-pressure-module relief valve. The regulator outlet pres-

sure remained between 344 and 203 psia until loss of data. During periods

of high propellant usage, the regulator outlet pressure decreased, but not

low enough for regulator operation. The regulator is the prime suspect

for this internal helium leakage. Data from preflight pressurization of

the auxiliary propulsion system indicates that the system probably was on

the secondary regulator at lift-off. Another leak path being examined is

the common mounting block for the high- and low-pressure helium system

pressure transducer.

The navigation, guidance, and control system successfully supported

the accomplishment of all mission objectives. The end conditions at park-

ing orbit insertion and translunar injection were attained with insignifi-

cant navigation error. Several minor problems did occur: The stabilized

platform subsystem exhibited a shift in crossrange velocity output during
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lift-off vibration, probably because of accelerometer pickoff contact with

a mechanical stop. The termination of the tower avoidance yaw maneuver
occurred about a second late because of an implementation flaw in the

launch vehicle digital computer flight program.

The launch vehicle electrical systems and emergency detection system

performed satisfactorily throughout the required period of flight. How-

ever, the S-II ignition bus voltage measurement indicated an anomalous

drop during and after the ignition sequence. This may be a measurement

failure, but suggests a possible failure in the electrical networks. The

S-IVB forward battery 2 depleted early as on AS-510 and did not deliver

its rated capacity. Operation of all other batteries, power supplies,

inverters, exploding bridge wire firing units and switch selectors was
no rmal.

Temperatures were maintained within desired limits throughout the

launch vehicle. The instrument unit environmental control system per-

formed satisfactorily for approximately 5 hours. However, at approxi-

mately 5 hours, coolant fluid circulation ceased due to an excessively

high gaseous nitrogen usage rate which depleted the thermal conditioning

system storage sphere. After cooling ceased, temperatures began to in-

crease but were within acceptable values at termination of instrument

unit telemetry.

The performance of the command and communications system was satis-

factory up to 7:40:43, at which time the instrument unit telemetry sub-

carrier was inhibited. At about 27:09:59, the Madrid, Ascension, Gold-

stone, Bermuda and Merritt Island stations suddenly lost the signal car-

rier. Short duration signal dropouts occurred in the command and commu-

nications system downlink beginning over 8 hours prior to the complete

signal loss. These dropouts were very sharp and, in most cases, did not

produce any more than an instantaneous loss of lock.

After the complete signal loss, repeated reacquisition attempts by

several ground stations were unsuccessful. Therefore, it is assumed that

the command and communications system downlink flight hardware was not

operational.

All aspects of the S-IVB stage and instrument unit lunar impact mis-

sion objectives were accomplished successfullY except the precise deter-
mination of the impact point and the time of impact. Based upon analy-

sis of available, tracking data, the S-IVB stage and instrument unit im-

pacted the lunar surface at approximately 2.10 degrees north latitude

and 22.1 degrees west longitude, which is about 320 kilometers (173 miles)

from the premission target point. The final determination of the impact
point will be published by the Marshall Space Flight Center after review

of all tracking and seismic data.
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14.0 ANOMALY SUMMARY

This section contains a discussion of the significant anomalies that
occurred during the Apollo 16 mission. The discussion is divided into six
major subsections: command and service modules, lunar module, government-
furnished equipment, lunar surface experiments, orbital experiments, and
lunar roving vehicle.

lb.1 COMMAND AND S_qVICE MODULE ANOMALIES

li$.l.1 Water/Glycol Temperature Control
Circuit Failed in the Automatic Mode

About 3 hours into the mission, the water/glycol temperature control
circuit (fig. 14-1) malfunctioned in the automatic mode. The malfunction
allowed an excessive amount of hot water/glycol to bypass the radiator
causing the mixed water/glycol temperature to exceed the upper control
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outlettemperature

_.-,,.. (:old _ Warm J Primary

= _- Evaporator inlet

, o t:or'tem;letture,
J Primary "_ ColdplatesandI
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radiators heatexchanger
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& controlvalve_ I controller _ Flowrate

transducer

Hot _ •

Figure IASml.-Primary water/glycol coolant loop.
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limit of 48° F. After remaining in this maximum bypass position for 5

minutes, the temperature control valve cycled regularly between maximum
and minimum flow to the radiators for about 14 minutes before stopping

again at maximum bypass. The control was changed to manual and back to
automatic to restart the valve operation and, finally, left in manual at

the desired valve position. Variations in the evaporator outlet temper-

ature and total system flow rate for the period are shown in figure 14-2.

Control valve operation is evident from the variation of system flow rate.
Total flow rate increases as the flow control valve opens since the total

system pressure drop decreases.

The temperature control valve was subsequently positioned manually
several times to maintain acceptable coolant loop temperatures under var-

ious thermal conditions. During an attempt to position the valve auto-

matically before the transearth extravehicular activity, the valve ap-

peared to position correctly, but only for a short time. In another

attempt after the extravehicular activity, the valve again showed exces-
sive bypass flow and high evaporator outlet temperatures.

Most likely, a malfunction occurred in the water/glycol temperature
controller which modulates the control valve by supplying signal pulses

with a duration proportional to the error of the mixed temperature sensed.

Postflight testing has isolated the problem to the valve controller.

Two separate problems have been identified in the controller. The first
is an intermittent condition in a feedback loop. The second is a loss of

control of the output silicon-controlled rectifiers. A component analysis

is being performed to determine the cause of each problem.

A controller also malfunctioned on Apollo 17 during ground tests.

Bench testing of this controller indicates that the problem is also loss
of control of the output silicon-controlled rectifiers.

This anomaly is open.

14.1.2 Service Propulsion System Oxidizer
Tank Pressure Measurement Shifted

The service propulsion system oxidfzer tank pressure measurement

shifted upward 15 psia after the spacecraft reached a vacuum environment.

The measurement responded to normal changes in pressure throughout the

mission, but always read 15 psia high as verified by other measurements

in the system.

Previous experience with this type of transducer showed that the ref-

erence cavity can leak through the feed-through tubes in the header and at





the header-to-case weld (fig. 14-3). During altitude chamber tests for

Apollo 16 and during the Apollo 12 mission, a similar transducer showed

the same type of failure. The Apollo 16 transducer (replaced after the

altitude chamber tests) had not had a vacuum check since 1965 to verify

that the reference cavity was leak tight. The altitude chamber test is

adequate to verify the integrity of this type of pressure transducer.

Typical
wire

paths

\\ 1 ....
Solder-_-_

Weld

_eferencecavity
pressure is
14.7 psia

gages

Diaphragm

Figure 14-3.- Service propulsion system pressure transducer failure.
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For all future spacecraft, replacement transducers which have a sealed

reference cavity _id are installed after altitude chamber testing is com-

plete will undergo a 12-hour vacuum check prior to installation. In those

areas where this type of transducer is critical for the mission, a redun-

dent measurement or means of determining the pressure will be provided.

In the case of this specific measurement, redtmdant fuel end oxidizer pres-
sure measurements will be added to the Apollo 17 vehicle.

This anomaly is closed.

14.1.3 Erroneous Gimbal Lock Indication

At 38:18:56, the computer issued a gimbal lock indication when no

gimbal lock condition existed. The vehicle was in the passive thermal

control mode, rolling at minus 0.3 degree per second, and the computer

was in the platfo]._nrealignment program. At 38:18:54.7, the computer
idling program was selected. This caused the thrust vector enable dis-

crete to be removed from the coupling data unit assembly. Removing the
discrete causes a relay to switch the source of an 800-hertz excitation

voltage. Interrupting the 800-hertz voltage caused a transient which

was electromagnetically coupled into the middle gimbal angle coupling

data unit read counter which erroneously set the 90-degree bit. The
computer sensed the change in the read counter and determined that the

middle gimbal angle was greater than 85 degrees (gimbal lock condition).

The computer then downmoded the inertial subsystem to the coarse align

mode which caged the platform to the present body reference angles. The

crew realigned the platform by taking optical sighting on both the sun
and earth.

To prevent caging the platform if the erroneous gimbal lock indica-

tion recurred, the crew used an erasable program whenever the thrust vec-

tor enable relay was used. This program inhibited the Computer from chang-
ing the coarse align relay.

Figure 14-4 is a simplified representation of the pertinent circuits

in the middle gimbal angle coupling data unit. The purpose of the read

counter is to store, in digital form, the platform gimbal angle. If the

gimbal angle changes, the analog signal is no longer the same as the dig-
ital signal from the read counter and the resulting error signal causes
a pulse train to be generated. The pulse train increments or decrements

the read counter ]_itil it matches the analog gimbal angle. The read

counter is a series of flip-flop logic circuits whose only inputs are

a pulse train end timing pulses. The 90-degree bit is unique, however,

because it can also be set by an ambiguity discrete. The purpose of the

ambiguity discrete is to prevent the platform from going to an ambiguous
position when the inertial measurement unit is turned on.
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The cause of the problem is contact bounce in the thrust vector en-

able relay (fig. :[4-4). The relay switches between two 800-hertz excita-

tion-voltage power sources which are applied to a transformer in the dlgl-

tal-to-analog converter portion of the coupling data unit. A relay without

a coil spike suppression diode will transfer between contacts in about 0.5
millisecond with the transients caused by the [power interruption and col-

lapsing field of the transformer inconsequential. The addition of the

suppression diode across the relay increases the dropout contact transfer
time to about 6 milliseconds.

Two relay problems were found during postflight testing. One was

that some relays exhibited contact bounce when energized. The other was

that when some of the relays were deenergized, the movable contact would

begin the transfer cycle, then remake with the contact it had just left,

and then complete the transfer to the other contact. The Apollo 16 relay

exhibited the latter problem.

In either condition if the relay contact initially closes the circuit

to the transformer (fig. 14-4) at the beginning of either half cycle of

the 800-hertz wave form, the current taken by the transformer during the

first 3/4 cycle of the 800-hertz excitation voltage will reach 4 to 5 times
the steady-state level. If this higher-than-normal current is interrupted

by the relay contact reopening, the transformer will feed back a voltage

transient as high as 250 volts on the llne to the relay. Both of these

problems result in clrcuit-interruption (bounce) durations that would

cause high voltage spikes; however, the bounce must occur, as stated pre-

viously, at the right time in the 800-hertz waveform.

Corrective action will be the addition of a filter across the pri-

mary of the transformer in the digital-to-analog converter portion of the

coupling data unit.

This anomaly is closed.

14.1.4 Inertial Subsystem Warnings and

Coupling Data Unit Fail Indications

The inertial subsystem warning light was observed to illuminate six

times during the transearth portion of the flight. Each illumination was

accompanied by a program warning of an inertial coupling data unit fail-
ure. The warning indications were intermittent; the first four cleared

themselves, and the last two were removed by bumping an access panel in
the lower equipment bay.

The coupling data unit assembly contains failure detection circuits

which monitor the performance of each unit and a failure discrete is sent

f
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to the computer if one or more of the following conditions exist for more
than 3 to 7 seconds. The first three conditions would be directly observ-
able from flight data; the last two may not necessarily be detected from
flight data.

a. Coarse error detect - A disagreement of approximately 30 degrees
between a read counter and the lX gimbal resolver.

b. Fine error detect - A disagreement of more than 0.7 degree be-
tween a read counter and the 16X glmbal resolver.

c. Cosine (e - 4) - Voltage less than _ Vrms. This voltage is nor-
mally 4 Vrme when the read counter agrees with the resolver voltage.

d. Read counter limit cycle - The read counter changes the direction
in which it is counting at a rate greater than 160 times per second.

e. l_-volt-dc power supply - The l_-volt-dc power supply in the
coupling data unit decreases to 8 volts dc or less.

The time delay associated with the failure discrete to the computer
was measured in flight as approximately 5 seconds. The failure indica-
tions persisted for _, 12, 16, 89_, 10, and 38 seconds, respectively.

Data during each occurrence has been reviewed and no abnormalities
were observed. If a real failure of the coupling data unit had occurred
and lasted as long as 89_ seconds, then some data indication should have
been observed. For this reason, an intermittent short in the wiring har-
ness or associated connectors shown in figure 1_-5 is indicated. However,
other possible causes may be an intermittent in the failure detection logic
circuits or the input logic to the computer.

Postflight tests on the individual subassemblies are in progress.

This anomaly is open.

14.1.5 High Heat Leak Into Hydrogen Tank 3

The heat leak into cryogenic hydrogen tank 3 was abnormal during the
early hours of the mission. Analysis of the Kennedy Space Center data has
shown that the heat leak of this tank was normal prior to llft-off. As
shown in figure 1_-6, the leak decreased from a high value of 15 to 20 Btu/
hour to a normal 2 to 6 Btu/hour by 70 hours and remained normal there-
after. All other parameters were normal.
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Figure 14-6.- Hydrogen tank heat leak data.

The insulation for this tank consists of several layers of gold-

coated H-film in a vacuum annulus that is formed between the inner pres-

sure vessel and the outer shell (fig. 14-7). The primary insulation sys-

tem is, however, the vacuum annulus. Degradation of this insulating vac-

uum will cause a significant increase in the heat leak into the tank as

shown in figure 14-8. The analysis indicates that the high initial heat

leak resulted from a degradation of this vacuum by approximately one dec-

ade (approximately 10 -6 to 10-5 torr). This degradation could have been

caused by any of three conditions.

a. If thermal insulation layers rubbed together during the launch

phase vibration, the condition could have caused the release of previously
entrapped or absorbed gas molecules into the annulus (hereafter referred

to as "insulation scrubbing").

b. A hydrogen leak from the pressure vessel into the annulus.

c. An ambient air leak into the annulus during launch.
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Figure 14-7.- Hydrogen tank.

Condition a.- Insulation scrubbing has been analytically ruled out

as a possible cause of the high heat leak. A non-condensible gas such as

hydrogen or helium would have produced a constant heat leak since eryo-

pumping would not occur at the observed temperatures. If the gas were

condensible, cryopumping would rapidly decrease the pressure at the pres-

sure vessel, preventing the observed heat leak. Nitrogen or oxygen, if

originally cryopumped, would have sublimed later in the flight, causing

the heat leak to increase to a high level (e.g., i00 Btu/hr at 185 hours),

which was not observed.

Condition b.- Hydrogen leak was also eliminated as a possible cause

since the leak wo_Lld have continued throughout the flight and would also

have produced a much higher heat leak than was observed.
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Condition c.- An ambient air leak is the most probable cause of the

high heat leak. Figure 14-8 shows that a pressure of 5 x l0 -5 torr in

the annulus would produce a heat leak of 21 Btu/hr, which is the average

observed for the first l0 hours of the flight. The heat leak returned to

a normal value of 6 Btu/hr by 80 hours, which corresponds to approximately

2 x l0 -6 torr. Assuming that a small hole opened in the outer shell dur-

ing the launch phase, the annulus pressure would quickly build up to that
required to produce the observed heat leak. As the bay pressure continued

to decrease and fall below that in the annulus, the annulus pressure would

follow the decrease slowly and drop to a final value sufficient to provide

the normal heat leak observed by 80 hours. Analysis shows that the area

of the opening was at least 2.2 x l0-3 sq cm. For an opening of this size,

iterative analysis places the formation of the crack or hole at approxlma- __
tely 2 1/2 minutes into the flight to produce the observed conditions.
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A thorough review of manufacturing, test, and checkout records was
performed in an attempt to discern any unusual or abnormal conditions to

which the tank may have been exposed. Although the investigation failed
to produce any definite reason for the failure, it did show one variance
from normal procedures that could have affected the tank. This tank was

returned to the vendor in October, 1969, for rework of broken wires on the

vacuum ion pump power supply. Receiving inspection revealed two abnormal

conditions : water was in the bottom of the shipping container and the tank

assembly was not secured in any way to the container cradle ring assembly.

Normally, the shipping container should be dry and the tank bolted to the

shipping container. The broken wires were repaired and tests performed

to verify electrical continuity, heater and fan operation, and vacuum ion

pump operation (which checks annulus vacuum). Also, an ambient boil-off

test was performed, with cryogenic hydrogen. The tank was then X-rayed

and shipped to the prime contractor. A comparison of these data and X-

rays with data from the original acceptance tests indicates that the tank

was normal in all respects. The fact that the tank heat leak was nominal

prior to launch also verifies that the tank was normal at that time.

The most likely cause of the high heat leak rate early in the mission
was the formation of an ambient air leak into the insulation vacuum annulus

at approximately 2 1/2 minutes after lift-off. Decreasing ambient pressure

gradually returned the annulus vacuum and, likewise, the heat leak rate to

normal levels by 80 hours.

No corrective action will be taken since the preflight procedures and
inspection of the tanks are adequate. In the event a leak occurs in the

outer shell during launch, the vacuum condition will be reestablished la-

ter without significantly affecting the total heat input to the tank.

This anomaly is closed.

14.1_6 Up-data Link Command Capability Loss

The spacecraft failed to respond to uplink real-time commands at

42:23:09 and again at 207:14:36. In each case, the condition existed

until the crew cycled the up-telemetry command reset switch from "normal"

to "off" and back to "normal". This restored normal operation.

A similar prc$1em was experienced on Apollo 9. Extensive review of

the spacecraft data, testing of flight hardware, and analysis of the com-

mand system did not identify a specific cause of the problem. A special

low-voltage test (_d show that a low-voltage transient could change the

vehicle address register and inhibit receipt of' any commands until power

is cycled to "off" and back to "on", resetting the register. However, on

Apollo 9, telemetx7 data failed to indicate any voltage transient condi-

tions that could be expected to change the vehicle address.
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The up-data link message acceptance signal was not present in the

spacecraft telemetry data during periods when the command capability was

lost. This indicated the problem was associated with a logic lock-up

within the up-data link package. The only postulated causes of lock-up

are a transient on the spacecraft power system or a transient developed

within the up-data link package.

Transients external to the up-data link have been ruled out on the

basis of telemetered spacecraft bus voltages, performance of other sensi-

tive spacecraft equipment at the time the problem occurred, and post-

flight verification of spacecraft up-data link wiring integrity, includ-

ing coil transient suppression in the antenna switching relay. Attempts
to introduce a malfunction by injecting noise into the up-data link through

external wiring were also unsuccessful.

During all attempts to duplicate the mission problem, performance of

the up-data link has been satisfactory. With the equipment in the space-

craft, a series of 200 commands switching between omnidirectional antenna

D and the high-gain antenna were sent via the S-band system. The up-data

link was then removed from the spacecraft and again subjected to a series

of 2000 commands without any evidence of malfunction. Monitoring of wir-

ing external to the up-data link did not indicate the presence of inter-

nally generated transients.
--4

The up-data link package was opened and measurements were made which

verified normal operation of the logic power supplies and the coll tran-

sient suppression diodes on each of the real-time command relays.

The up-data link was closed and then subjected to nine impact shocks

ranging from 20 g to 50 g while commands were being received to screen for

a possible workmanship problem.

No corrective action is planned because it has not been possible to

duplicate the flight problem and isolate the malfunctioning component or

circuit. If the condition should occur in flight, normal operation can

be restored by crew cycling of the up-telemetry command reset switch.

This anomaly is closed.

14.1.7 Leakage During Inflight Chlorination

During the third daily water system chlorination, difficulty was ex-

perienced in injecting the chlorine solution. (The chlorine ampule is

placed in an injector before use.) Rotation of the injector knob which

causes the fluid to be expelled from the ampule seemed stiffer than usual.

Fluid leakage (noted at the interface between the needle assembly and the

injector when the injector was removed) stopped quickly upon injector re-
moval.
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Upon further examination by the crew, the chlorine ampule appeared

to be broken (les}:ing) and the inner bladder was visible after having been

extruded past the base plate. Inner bladder extrusion has been observed

before but has not been associated with leaks. Figure 14-9 shows typi-

cally how the Teflon bladder can be forced past the injector base plate.

The body sidewall is not sufficiently rigid to prevent the bladder from

extruding around the base plate and being creased, which would be condu-

cive to leaks. Subsequent chlorine injections were satisfactory. The

specific ampule which caused the problem was later jettisoned with the
lunar module and was not available for postflight inspection.

f Body

Seal

Initial configuration

plate
Teflon
bladder

Chlorine

_'-Flow Chlorine injector

Failed configuration

AREA

Figure 14-9.- Chlorine ampule failure.
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Inspection of the 15 chlorine and 16 buffer ampules returned revealed
that 60 percent had loose base plates and BO percent had bonding adhesive
adhering to the inner wall. Eight (five chlorine and three buffer) of the
unused ampules were leak-tested. One buffer ampule leaked because the
bladder was pinched between the base plate and the side wall.

Corrective action consists of checking all ampules for detection of
bonding material on the ampule sidewall or adhesion of the bladder to the
sidewall. In addition, the fluid will be evacuated for entrapped sir to
help preclude the base plate from being loosened due to bladder disorien-
tation resulting from increased pressure in the ampule as the entrapped
air expands with cabin pressure decrease.

This anomaly is closed.

14.1.8 Failure of Mass Spectrometer Boom to Fully Retract

During scientific instrument module experiment operations, the mass
spectrometer boom mechanism stalled and would not fully retract. The prox-
Imity switches indicated that the mechanism always retracted past the safe
service propulsion system firing position except before transearth injec-
tion. At that time, the mechanism stalled two-thirds out (approximately
200 inches) and would neither extend nor retract. Since the motor had been
previously stalled with the current left on for more than 40 minutes, the
motor apparently burned out. The boom mechanlsm and experiment were Jet-
tisoned prior to the transearth injection maneuver.

The stalls prior to the last event are believed to be caused by
bunching or snagging of the coiled experiment power cable during retrac-
tion as this had occurred previously during 1-g testing. On Apollo 15,
the failure of the boom to fully retract was attributed to cable bunching
and some design modifications were made to help alleviate the problem
(see sec. 14.1.6, reference 4).

Apollo 16 data were examined in an attempt to determine why the boom
stalled, but nothing in the data revealed the cause. The data indicates
that both motors on the mass spectrometer functioned correctly up to the
moment of the final failure. The booms always retracted in anormal fas-
hion to within the range of the proximity switch, except in the case of
the final failure.

In the absence of any specific evidence, it is assumed that the ini-
tial cause of the failure of the boom to fully retract was jamming of the
cable in the boom housing. The repeated and prolonged stalling of the mo-
tors caused the final failure of the boom in mid-stroke.
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The Apollo 17 lunar sounder has two HF antennas which are deployed
and retracted by a mechanism that is the same in concept as the mass spec-
trometer and the gamma ray boom mechanisms. However, the HF antenna mech-
anism is a simpler design and the antenna has no cables that are required
to travel in and owt with the antenna. Therefore, the suspected Apollo 16
failure cause is not applicable to the Apollo 17 design; consequently, no
corrective action is required.

This anomaly is closed.

ih.1.9 Gamma Ray Spectrometer Boom Mechanism Stalled

During lunar orbit scientific instrument module bay operations, the
gamma ray boom meclhanism stalled and would not fully retract on three of
five retractions. The boom mechanism always retracted past the "safe ser-
vice propulsion system firing" position as indicated by the proximity
switch. The cause of the retract failure is not known, but bunching or
snagging of the coiled experiment power cable during retraction is con-
sidered the most probable cause since this has happened on other occasions
during 1-g ground testing.

As in the case of the mass spectrometer boom, Apollo 16 data were ex-
amined in an attempt to determine the cause of the incomplete retractions,
but the cause was not determined. It is apparent that both motors on the
gamma ray spectrometer functioned correctly. The boom always retracted
in a normal fashion to within the range of the proximity switch.

In the absence of any specific evidence, it is assumed that the ini-
tial cause of the failure of the boom to fully retract was Jamming of the
cable in the boom housing. No further action will be taken since this
mechanism will not be used on spacecraft for any future Apollo missions.

This anomaly is closed.

l_.l.10 Service Propulsion Engine Gimbal Actuator Oscillations

During the pre-ignition checklist for the lunar orbit circulariza-
tion maneuver, an oscillation was detected in the yaw axis of the second-

ary servo system for the service propulsion engine glmbal actuator. Fig-
ure 14-10 is a functional diagram of the servo loop. The oscillation was
present in all modes of operation, but only when the secondary yaw servo
loop was used. The oscillation was limited at +l.0 degree and at 2.4
hertz with the gimbal correctly following commands to different positions.
Figure lh-ll shows one occasion that the oscillation did not occur when
reposltioning the engine which implies that the failure is electrical in
nature.
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(primary guidance control).

Inflight results were matched by simulations of system performance

with an open in the rate feedback loop of the yaw servo system. It was
also demonstrated that the oscillations would have damped after ignition

because of the side load forces exerted on the engine bell while thrust-

ing. Therefore, the secondary yaw servo system was considered safe to
use if the primary servo system were to fail and it became necessary to

switch over to the secondary system.

The cause of the failure was an open in the rate feedback loop of the

secondary yaw servo system. Postflight testing of command module wiring

and connectors and bench testing of the thrust vector servo assembly did

not reveal any abnormalities. Therefore, the failure must have occurred

in the service module wiring or connectors. Possible pin corrosion on

the engine gimbal actuator wiring harness connectors or broken wires in

the yaw gimbal wiring loop are the most probable causes of the flight

problem. A broken wire would result from inadequate strain relief (see

fig. 14-12) due to cable flexing. Wiring harnesses to the actuator as-

sembly on three other vehicles were reviewed and found to move when the

engine was gimballed. Motion of the actuator produced a strain on the

harness at the lower clamp. The position of this clamp was changed for

the remaining vehicles to provide strain relief.
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Figure 14-12.- Yaw actuator assembly and interconnecting wiring.
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Routing of the wiring harness to the actuator assembly on Apollo 17
has been changed to provide adequate strain re]ief and prevent harness

flexing when engine gimbaling occurs.

This anomaly is closed.

14.1.11 Noise From Cabin Fans

Approximately 2 hours after transearth injection, the cabin fans

started making a loud moaning sound. They were turned off and not used
again during the mission.

When the spacecraft was received for postflight testing, the cabin
heat exchanger inlet duct screens were blocked with lint and debris with

paper taped over the screens. However, this had no effect on the oper-
ation of the fans .. Operation and sound level were normal and the fan

current was within specification. Visual inspection of the fans did not

show any nicks or indications of interference. Two small pieces of gray
tape, approximately 1/4 inch in diameter, and dust were found on the cabin

fan exhaust filter (which is installed by the crew after leaving earth or-
bit).

The most probable cause for the fan noise was some object which got
into the fan and was later freed.

This anomaly is closed.

14.1.12 Erroneous Suit Pressure Transducer Reading

While the cabin was depressurized during the transearth extravehicu-

lar activity, the indicated environmental control system suit loop pres-

sure transducer reading was 4.6 psia (fig. 14-]3). Specification values

for this regulated pressure are 3.5 to 4.0 psia and the control point de-

termined from Kenzledy Space Center altitude chamber testing was 3.8 psia.

The Commander's szld Lunar Module Pilot's suit cuff gage readings of 3.5

and 3.8 psia indicated that pressure regulation was satisfactory and that
the transducer reading was erroneous.

Prior to the reduced cabin pressure operations, the suit transducer

performed acceptably and read within 0.i psi of the cabin pressure trans-

ducer with the suit loop open to cabin. After cabin repressurization, the

suit transducer again appeared to read correctly above 4.6 psia.

The suit pressure transducer was removed from the command module dur-

ing postflight testing and a reduced-pressure test and calibration check
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were conducted. The results were within tolerance. Teardown analysis re-

vealed three particles of calcium aluminum silicate (lunar origin) ranging
from 500 to 2000 microns in size in the sense cavity. If one of the lunar

particles had been caught in the air gap (see fig. 14-14) of the variable
reluctance element, the armature would transmit an incorrect signal. Nor-

real readings were obtained when the cabin was repressurized and a suit

pressure in excess of h.6 psia was obtained. This could have freed any

particle that might have been lodged in the air gap.

The corrective action for Apollo 17 and later spacecraft will be to

add a 5-micron filter in the suit pressure sense line to protect the suit

pressure transducer.

This anomaly" is closed.

t.e plate

Air gap

tors in ferrite

0 0 cup cores

F:igure 14-14.- Suit pressure transducer.
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14.1.13 Digital Event Timer Counted Erratically

The digital event timer, located on panel l, indicated erroneous time
(compared to computer time) after counting up or down over a preset time
interval. It had performed satisfactorily during the early portion of the
flight, but began to malfunction approximately midway through the mission.
Postflight testing verified that the '%ens of seconds" wheel would not up-
date, counting either up or down, and would cycle for several seconds when
the timer was reset (the maximum tlme should have been 0.3 second).

Inspection of the digital event timer showed that the bearing points
in the magnesium motor plates had been elongated. The idler gear is free
to rotate on the shaft (fig. 14-15); however, the design permits the stain-
less steel shaft to also rotate which would account for the wear in the mo-

tor plates. The elongated bearing points permitted the idler gear to rub
against the number wheel. This interference rubbed paint off the number
wheel and the paint particles prevented the sllp rings and brushes from
making good contact which affected proper counting of the seconds wheel.

The bearing points also elongated on the Apollo 15 digital event
timer. The idler gear shaft can be prevented from rotating by staking
at the bearing point in the motor plates. For Skylab, corrective action
will be to secure the shafts of digital event timers, that require open-
ing of the case for other rework. For Apollo 17, the units will be vis-
ually inspected for signs of Wear.

This anomaly is closed.

14.1.14 Uneven Drive Rates of the Scanning Telescope

The crew reported that the scanning telescope shaft axis drove errat-
ically and seemed to get worse with time. The condition was observed in
the computer mode and the zero optics mode and only through the telescope.
The uneven drive rate was related to a change in the characteristic noise
level when the optics was being driven. The crew could not be certain
whether the uneven drive rates were directly or inversely proportional to
the noise level.

The telescope shaft axis is slaved to the sextant shaft through lX
resolvers in each unit. No drive problem was reported with the sextant;
however, it is doubtful whether uneven drive rates would have been de-
tectable by the crew because of the differences in the magnification and
field of view of the two instruments. No uneven drive rates have been

observed in flight data.
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The optical unit assembly was thoroughly soaked during recovery by
salt water which caused extensive corrosion. The unit was cleaned, how-
ever, and tested. The intermittent flight condition was reproduced by
wiggling the scanning telescope wiring harness in the Optical unit as-
sembly. An examination of the female connector on this harness revealed
9 of 61 contact springs (fig. 14-16) were cracked or broken. Also, sev-
eral contact springs were found broken in a 91-pln connector in the op-
tlcal unit assembly. The cause of the broken springs is being investi-
gated.

This anomaly is open.
/
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Figure i_-16.- Contact and leaf spring arrangement of optical unit connector.
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14.1.15 Sticking Lithium Hydroxide Canister

During the first lithium hydroxide canister change performed after

redocking with the lunar module, considerable trouble was experienced in

removing used canister 12 from side B of the environmental control unit.

Some minor sticking was also noted during an earlier change (at approxi-

mately 152 hours) while removing canister i0 from side B. No problems

were encountered removing other canisters.

Both canisters had been used extensively during lunar orbit solo op-

erations. Under conditions of high flow, low temperature, and low carbon

dioxide supply, the exothermic reaction is insufficient to drive off the

atmospheric and reaction moisture which accumulates in the canisters.

The canisters apparently expanded due to the retension of the excessive
moisture.

Conditions conducive to this problem were present during the solo

period. The Command Module Pilot noted that he had positioned the suit
flow control valves to "suit full flow", allowing significantly higher

gas flow through the environmental control unit carbon dioxide canister
than had occurred during the comparable period on previous missions. The

average flow was 56 cu ft/min during the Apollo 16 solo period as com-

pared to 36 cu ft/min during the Apollo ll, 12, 14, and 15 solo periods.

The valves were positioned to cabin flow during these previous missions.

Although canister l0 was jettisoned with the lunar module, canister

12 was returned for inspection and analysis. Figure 14-17 shows a cross-

section of the lithium hydroxide canister. The lithium hydroxide swells

while it is being used, and to account for this swelling, the units are

fit checked in the spacecraft with 0.030-inch shims on all sides. Addi-

tionally, the pull force required to remove the canister is checked with

the shims in place. An analysis performed on five separate layers of
the chemical bed indicated that approximately 32 percent of the lithium

hydroxide had been used. In addition, the analysis showed the moisture
content to be approximately 21 percent compared to a range of 5 to i0 per-
cent found in canisters used during the solo period on previous flights.

A dimensional analysis showed both sides of the environmental control

unit canister receptacle to be within specification, although postflight

removal forces using the canisters indicated a tighter fit in side B (53-ib

pull) than side A (22-ib pull). The preflight pull force for this canister
was 18 pounds. Normally, pull forces for these canisters are i0 pounds or
less.

The combination of the adverse environment and the initially tighter-

fitting canister apparently accounted for the removal difficulty.
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Figure 14-17.- Lithium hydroxide canister.

To prevent recurrence of this problem during the Apollo 17 mission,

the prelaunch insertion and removal force specification during fit checks

at the Kennedy Space Center will be changed from 30 pounds to 8 pounds

for the canisters to be used during the solo activities. The maximum al-

lowable force on the remaining canisters will be reduced to 15 pounds.

In addition, flight procedures will be changed to insure that the suit

flow control valves are positioned to cabin flow for solo operation.

This anomaly is closed.

14.1.16 High Gain Antenna Would Not Acquire

High-gain antenna operation was lost for approximately 1 1/2 hours
beginning at 234:14 while the command and service module was in the pas-

sive thermal control mode and the crew were asleep. Communications with
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the spacecraft were being maintained by ground-commanded switching be-

tween the high-gain antenna and omnidirectional antenna D. The initial

indication of a problem occurred at about 234:04 when the high-gain an-
tenna reached the scan limit and failed to drive to the position set on

the manual controls° Figure 14-18 shows the path taken by the antenna

prior to the anomaly, where it stopped, and the position to which it

should have driven. The antenna remained at the position indicated un-

til the crew awakened about i 1/2 hours later _id cycled the high gain

antenna track mode switch from "reacquisition" to "manual" and then back

to "reacquisition".
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Figure 14-18.- High gain antenna scan limit.

Figure 14-19 shows the pitch and yaw positions and signal strengths

in the time frame of the problem. This figure indicates normal high gain

antenna operation up to and immediately following entry into the scan-lim-

it region. The step decrease in both uplink and downlink signal strength

was due to switching from narrow to wide beam. Such a beam switch results

when the logic latchup circuit 2 latches (fig. 14-20). Logic latchup cir-

cuit 2 latches when logic latchup circuit i latches and logic latchup i
latches when the antenna with the "reacquisition" track mode selected,

tracks from the clear track area to the scan limit. Latching of logic

latchup I also internally switches the antenna to manual track. For the



14-30

,_-'- Omnidirectional antenna /_ Data recorder/reproducer

.°=- _- _mmanded on _ commanded forward°
o_ cg

-- E

_= -70
"C.2 - -=_, 90
.E _,-Ii0 _--

_' 40 _C axts to gimbal stop

6°I

"_ E. 80

_ 280
- 260 "------_--- --'---'-"

< _ I t t I t J I I I I I I I t i I i I I ->- 240
234:04:27 234:04:30 254:04:33 234:04:56 254:04:59 234:04:42 234:04:45

Elapsedtime,hr:min:sec

Figure i_-19.- High-gain antenna data at beginning

of anomalous period.

antenna position (pitch = 60 degrees and yaw = 258 degrees at the scan

limit) and the commanded position (pitch = -44 degrees and yaw = 8h de-

grees), the C-axis error signal is large and it should drive the C-axis

to the gimbal stop upon switching to "manual". The A-axis should also

start rotating, but its response is very slow because it is essentially

180 degrees away from the commanded position. The A-axis manual error

signal also has a false unstable null 180 degrees away from the true null.

The rapid change in pitch shortly after the beam switching, shown in fig-

ure 14-19 (from approximately 59 deg to 71 deg) is verification that the

C-axis drove to the stop as expected. Normally, the C-axis would remain

against the gimbal stop until the A-axis rotated approximately 90 degrees

and then would drive away from the stop to the commanded position.

Shortly after the C-axis drove to the stop, the noise on the high-

gain antenna pitch and yaw readouts disappeared until the problem cleared

following the switch to "manual" track. Noise has been observed on the

high-gain antenna pitch and yaw measurements in the past. Essentially,



14-31
f

+12 Volts

:)ModerAuto_ A t

select "1- Auto_ B Axis
Reacquisition inhibit

C

Manual
error _L To axesand
detector modecircuits

beamand
]obingswitches

Earth
presence

Scan
limit

Figure 14-20.- High-gain antenna logic diagram.

no noise has been associated with the "inhibit" mode. Figure 14-20 shows

that selecting the "automatic" mode and reaching the scan limit triggers
an "inhibit" circuit.

The noise on the pitch and yaw readouts reappeared following the

track mode switch. The high-gain antenna acquired and operated normally

after cycling the :mode select switch to "manual" and then back to the

"automatic reacquisition" position.

In summary, the data showed:

a. The antenna remaining near the "earth set position" instead of

driving to the "predicted earth rise position" after entering the scan
limit.

b. Noise disappeared on the high gain antenna pitch and yaw read-
out s.

c. Cycling tlhe track mode switch from "reacquisition" to "manual"

cleared the problem.
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The variations in current, combined with the resistance between the
electronic box common ground and spacecraft ground cause noise on the
high-gain antenna pitch and yaw readouts. An inhibit reduces the gain
of the mode switch circuits so that the current variations, and hence
the nolse, are reduced. The reduction in noise, consequently, indicates
that the logic went to the "inhibit" mode.

Tests associated with logic operation, for the high-gain antenna
operating conditions involved, revealed no condition or combination of
conditions in the logic of a normal circuit that could cause the anomaly.
This included elimination of a possible A-axis false null hang-up. Fur-
thermore, the tests showed that the noise on the pitch and yaw readouts
did not disappear when a false null hang-up was induced.

Tests did indicate, however, that the anomaly could be the result
of simultaneous selection of both the "reacquisition" and "automatic"
track modes. In this case, an inhibit would result if the antenna en-
tered, and remained inside the scan limit (fig. lh-20). Simultaneous
selection of both "reacquisition" and "automatic" track would require
a fault, or malfunction in the mode select switch, associated space-
craft wiring, or internally in the hlgh-gain antenna electronics. Al-
though the telemetry data indicate no voltage on the "automatic" select
line, such a condition could occur and not be detected. The mode select
switch and the associated wiring, however, were thoroughly checked, in- -
cluding disassembly and inspection of the switch, and no discrepancies
were noted.

Stray voltage on the "automatic" select line is highly unlikely
since tests showed that 13 to 14 volts at the electronics box input were
required to select a track mode. A review of the electronic box circuits
involved indicated no internal malfunction that could result in simul-
taneous "automatic" and "reacquisition" track, then be cleared by cycl-
ing the track mode switch, and not exhibit other unique symptoms. The
other possibility for the cause of the anomaly is that one of the two
logic inhibit gates may have malfunctioned.

The integrated circuit generating the inhibit is shown in figure
lh-21. These types of devices have been found susceptible to contamina-
tion from internal floating particles. A particle can move as a result
of acceleration or electric fields, and create an internal short which
changes the state. Additional acceleration or changes in the electric
fields can result in the particle moving again and either clearing the
problem, or showing itself as an intermittent problem.

The particular integrated circuit was manufactured prior to incorpo-
ration of passivatlon which reduced the likelihood of floating particle
contamination.
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A particle resulting in any one of the following shorts (fig. 14-21)
would result in an unscheduled inhibit.

a. Collector-to-base - QI2' QI3' Q22' or Q23

b. Collector--to-emitter - Qll' Q12' Q21' Q22

c. Base-to-collector supply - Q12' Q13' Q22' Q23

An internal short of this type would have to clear when the track

mode switch was ch_Mlged from "reacquisition" to "manual".

No corrective action is planned because experience shows contamina-

tion in the electronics box has a low probability of occurring. Further,

if the problem bec,mme permanent in one electronics box, the secondary unit
can be selected.

This anomaly is closed.

Bias voltage

Brakemode Auto
,_= prime

Jisition
Autoselect Q 12 Q 22 select

Earth
presence

inhibit Inhibit

Figure i_-21.- Schematic of integrated circuit

within uplink package.
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14.1.17 Difficulty in Extending and Locking the Y-Y Strut

The Command Module Pilot had difficulty in extending and locking the

Y-Y strut in preparation for entry and commented that he could not discern

any clearance between the strut pad and command module wall.

Postflight investigation showed no significant binding during strut

operation. Visual examination (fig. 14-22) showed:

a. Wear areas along the keys

b. The strut barrel was 2.757 inches in diameter and should have

been between 2.740 and 2.750 inches

c. The set screws which provide a stop for the strut piston in the

strut barrel were bottomed out against the piston.

The strut barrel was deformed by the set screws and caused the wear

along the keys because the barrel became within tolerance as soon as the

set screws were adjusted to the specified gap of 0.002 to 0.005 inch.

A similar condition was reported on the Apollo 17 spacecraft and

corrected by adjusting the set screws. Engineering has been released

to verify these dimensions prior to installation for future spacecraft.

Postflight investigation of Apollo 16 also verified a sidewall clear-

ance of 0.044 inch which compares to 0.041 prior to launch. The Apollo

Operations Handbook has an inflight procedure to remedy this situation.

This anomaly is closed.

14.1.18 Holes in Canopy of Main Parachute

Inspection of the canopy of one of the recovered main parachutes in-
dicated numerous small burn holes which are similar to the burn holes ob-

served on parachutes from previous missions (fig. 14-23). The cause of

the earlier holes had been attributed to the reaction control system ox-
idizer.

During the final descent, at an altitude of about 350 feet, the crew

manually fired the two plus-yaw engines for the planned 1-second, then

fired the two minus-yaw engines, again for about i second. This proced-

ure was performed to bleed off the pressure trapped between the engine

valves and the propellant isolation valves which are closed at about 3000

feet altitude (the firings were thus referred to as the "burp firing").
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Analysis of films of the burp firing indicated that flame was produced
outside of the plus-yaw engines for a period of about 0.5 second. This

flame started at the engines and extended upward toward the risers before

extinguishing itself. Oxidizer flow also appeared for about I second as

evidenced by a red vapor cloud.

The basis for this firing was the concern that the pressure increase

resulting from the sea-water wetting of the reaction control system lines

between the isolation valve and the thruster could cause the pressure to

reach the burst ill,its of the weakest component which is the thruster as-

sembly. The temperature of the reaction control system lines prior to

landing is about 55° F; however, after landing, wetting can raise the

temperature of the lines to about 85° F. The actual pressure profile in

the system due to a temperature change of about 30° F will be determined
by testing a spacecraft system. The results will show whether a "burp

firing" is necessary. Normally, the isolation valve will relieve any

pressures up to 800 psi that may be trapped between the isolation valves
and the thrusters.

A leak in the isolation valve bellows can prevent the valve from re-

lieving but this is the only failure whichl could prevent the isolation

valve from operating normally. For the condition of the isolation valve

not relieving, a test is being conducted to determine the maximum system

pressure that could be expected.

In the event that pressure relief is required in the lines, an on-

the-water operation of the isolation valve or the thrusters is being con-
sidered.

This anomaly is open.

14.1.19 Water/Glycol on Command Module Floor

During postflight operations, residue from approximately one teaspoon

of water/glycol was found on the command module floor in front of the en-

vironmental control unit. A trace was also noted on the lower front edge

of the suit heat exchanger and on the coolant control panel side of the
environmental control unit.

Subsequent proof pressure and pressure decay tests conducted on both

the primary and secondary Coolant circuits were satisfactory. The coolant

panel was cut away as required to visually observe possible leakage in the

suspected area of the primary suit heat exchanger diverter valve. No leak-

ing was observed s_idthe torque stripe was intact on all B-nuts in that
a_fea.
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During the helium pressure decay cheek, a leak of 255 X i0"v sce/s

was observed during repositioning of the suit heat exchanger bypass valve.
A fiber was found under the two O-ring seals on the control key shaft when

the valve was disassembled (see fig. 14-24). The valve is motor driven

between two positions. The O-rings around each of the four openings (fig.

14-24) in the valve body normally maintain a seal at the selector and

valve body interface, i.e., when the selector is in either position. Dur-

ing the movement of the selector from one position to the other, which re-

quires about 20 seconds, system integrity through the valve is maintained

by the two O-rings on the key shaft. Although the only time this valve is

moved during the mission is just before entry into the earth's atmosphere,

it is activated numerous times during spacecraft testing after the system

is filled with water/glycol and pressurized.

The environmental control unit area, i.e., the bypass valve, B-nut

connections, and cabin floor will be inspected for glycol leak prior to

launch on subsequent missions.

This anomaly is closed.

14.1.20 Oxidizer Deservicing Tank Failure

An explosive failure of a ground support equipment decontamination

unit tank occurred during the postflight deactivation of the oxidizer

(nitrogen tetroxide) portion of the Apollo 16 connnand module reaction

control system.

The command module reaction control system is emptied of all remain-

ing propellant using ground support equipment designed to provide an acid/
base neutralization of the propellant in both the liquid and gaseous phases

so that it may be disposed of safely. During the deactivation operation of

the oxidizer from the Apollo 16 command module on May 7, 1972, the scrubber

tank of the decontamination unit exploded, destroying the ground support

equipment unit and damaging the building that housed the operation. 0nly
minor injuries were received by the personnel in the area and the command

module was not damaged. More detailed information concerning the incident

is given in reference 7.

Test results show that the failure was caused by an insufficient

quantity of neutralizer for the quantity of oxidizer. This insufficiency

lead to exothermic nitration-type reactions which produced large quanti-

ties of gas at a very high rate and failed the decontamination tank.

Recommendations of the Apollo 16 Deactivation Investigation Board

will be implemented for Apollo 17 and following missions (ref. 8).

This anomaly is closed.
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14.1.21 Reaction Control System Regulator Inlet Filter Failure

As a result of the Apollo 16 lunar module reaction control system
regulator anomaly, the command module reaction control system regulators
were removed for postfllght testing and examination. A visual examina-
tion showed two of the regulator cyllndrical-lnlet-filter assemblies were
deformed in the area of the end screen (fig. 14-25). On one filter, the
end screen was bulged out about 0.060 inch. The visual examination also
revealed that these two filters have either a wire separation or crack
in the end screen near the peripheral weld area. Tests showed that the
bubble point on the worst-case filter had increased to 100 microns (spec-
ification is 25 microns). The filters on the other two regulators were
essentially normal, and testing on these two regulators showed completely
normal characteristics.

The deformed filters are being evaluated. This evaluation includes
retestlng the filters for bubble point and performing a microscopic exam-
ination and a metallurgical examination in the areas of the wire separa-
tion. The objective of this investigation is to establish if the defor-
matlon is a normal condition resulting from system activation or if a
unique condition occurred on Apollo 16.

This anomaly is open.

(a) Frontviewshowingcrackededge. (b) Sideviewshowingdeformedend.

Figure 14-25.- Reaction control system regulator filter.
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14.2 LUNAR MODULE ANOMALIES

14.2.1 Paint Flaking From Thermal Shield Panels

Just prior to transposition and docking, particles were coming off
the thermal shield panels on the minus Y side of the ascent stage. The
particles caused the panels shown in figure 1h-26 to have a shredded ap-
pearance. (The aft equipment rack thermal shields and the insulation
dangling from the bottom of the ascent stage shown in figure 7-1 are dis-
cussed in section 14.2.2.) The paint flakes interferred with star sight-
ings and were potential optical surface contaminants. Thermal tests con-
ducted on specimer_3removed from a lunar module panel demonstrated that
the paint on the panels starts to peel at approximately minus 120° F. The
predicted minimum temperature of the panels during the mission is minus
270° F.

Effective with the Apollo 15 spacecraft, changes were made to the
vehicle to minimize the reaction control system propellant temperatures
for the 72-hour lt_ar stay desi@q case. One change was that 16 panels
on the ascent stage were painted white. Subsequently, a more effective
change was made by the addition of tank insulation. The effect of total
loss of the paint on the panels results in a maximum reaction control
system propellant temperature increase of approximately 2° F.

The correctiw._action for Apollo 17 will be to remove the paint from
the panels since the paint has little thermal value.

This anomaly is closed.

14..2.2 Aft Equipment Rack Panels Torn Loose

At lunar lift-off, four vertical thermal shields (fig. 14-26) on the
aft equipment rack were torn loose from the lower standoffs and remained
attached only at the upper standoffs. This occurrence was observed from
the lunar-based television.

The most probable cause of the failure was ascent engine exhaust en-
tering the cavity behind these thermal shields. A cross section of the
lower edge of the shields is shown in figure 1h-27. Analysis shows that
the thermal shield which extends below the support tube allows a pressure
buildup on the closure shield which exceeds its capability. Once the
closure shield failed, the exhaust entered the cavity behind the shield,
resulting in a pressure buildup exceeding the capability of the vertical
thermal shields. _._edetailed flight configuration in this area was not
tested.
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Figure 1_-26.- Paint flaking and damaged thermal shield panels.





In the lunar surface photographs taken prior to lift-off, some of

the shields appear to have come loose from the center standoff (fig. 14-28).
Excessive gaps between some of the panels are evident. Both conditions

could be caused by excessive pressure in the thermal blanket due to insuf-

ficient venting during boost.

The corrective action will include a redesign of the thermal shield

to eliminate the projection below the support tube, as shown in figure
14-27, and to provide additional venting to the blankets as well as ad-
ditional standoffs.

This anomaly is closed.

Figure 14-28.- Aft equipment rack thermal shields
•oose at center standoff.
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14.2.3 Steerable Antenna Inoperative In Yaw Axis

The S-band steerable antenna (fig. 14-29) would not move in the yaw

axis during initial activation. Several unsuccessful attempts were made

to operate the unit using both the manual slew and auto track modes. Pho-

tographs and inflight test data show that the problem was cs.lsed by fail-
ure of the mechanical stow latch to release.

Figure 14-29.- Lunar module S-band steerable antenna.

Functionally, the stow latch restrains the antenna during launch.

Figure 14-30 shows the functional operation of the latch. The lock pin,

when extended, holds the antenna in the stowed position. A spring is held

under compression by a sleeve which is constrained to the latch housing by

a shoulder soldered to the sleeve. Melting the solder allows the spring

to push the sleeve which, in turn, raises the lock pin out of the retainer.

A manual mode is provided for checkout purposes. The lever (fig. 14-30)
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Figure 14-30.- Antenna stow latch mechanism.
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will pull the lock pin past the bali detent, thus releasing the antenna
without disturbing the spring-sleeve-solder configuration.

Antenna photographs taken on the lunar surface and in lunar orbit

prior to docking indicate that the lever for the yaw axis latch was still
in the locked position. The crew noted a 2- to 3-degree movement of the

yaw indicator during activation attempts. Ground tests have shown that
the tolerances in the antenna retainer/locking mechanism will allow a

slight movement of the antenna dish even though the pin is locked.

There are several areas in the electrical circuitry which could have

caused the problem. One is that one contact ill the safe/arm switch (fig-
ure 14-31) did not make. The second is that artopen may have existed down-

stream of the safe/arm switch, either in the solder-melting element or in

the wiring back through ground. A resistance measurement is made across

the two parallel solder-melting elements prior to flight. About a 3-ohm
increase in resistance was found at the last check. This change is equiv-

alent to a possible lO-ohm increase in one of the elements which could

have reduced the power dissipation below that required to melt the sol-
der. Allowable tolerances on mechanical drawings and tests on sample

latches have sho_m that it is possible for a solder fillet extending be-

low the ring to make physical contact with the housing (fig. 14-30). The

Auto

__0_ Ii Gimbal motors
Filter I, ! $

s,ow / I
Track mode

switch Safe I Pitch solder I

I I I element I I
Arm! _L______, I

I II _ Jumper added I

i ' I [Yaws. lderI

,Safe/arm switch on Arm
28V dc return antenna electronics assembly

I '

L_. S-band steerable antenna

Figure 14-31.- Lunar module steerable anteona stow-latch circuit.
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contact allows the housing to act as a heat sink and, under marginal elec-
trical conditions, draw off sufficient heat to prevent melting of the ring.

Several corrective actions are planned for Apollo 17 to cover all
reasonable possibilities of failure. These include:

a. Machining off the exposed solder fillet and a portion of the
housing to eliminate possible contact.

b. Inspect 100 percent of the heating wire of the solder assemblies.

c. X-raying latch assemblies to insure proper assembly.

d. Measuring the Circuit resistance of both the antenna and associ-
ated wiring on the vehicle.

e. Adding wiring to the circuit to provide redundant paths through
the safe/arm switch to the solder melting elements.

This anomaly is closed.

lh.2._ Reaction Control System Helium Regulator Leakage

During pressurization of the system at about 95 hours, the regulator
outlet pressure in system A (fig. lh-32) increased above regulator lockup
pressure. The normal pressurization is characterized by a sharp increase
from the nominal pad pressure, in the interval of 1 to 2 seconds, to the
normal regulator outlet pressure. The outlet pressure of system A, after
reaching the normal value of 18& psia, continued to rise at approximately
l0 psi/minute, a condition which clearly indicated the existence of in-
ternal leakage in the regulator assembly.

Approximately 3 minutes after pressurization, the first of four prop
pellant transfer operations was performed (fig. 1_-33) to lower the ullage
pressure and to create a larger pressurant volume in the propellant tanks,
thereby obtaining a blowdown capability for expulsion of the remaining pro-
pellant in case of total loss of system A pressurization gas through the
relief valves. The helium leakage continued throughout the mission, al-
though the leakage rate varied from essentially zero to a maximum of about
llO0 scc/min (figs. 14-34 and lh-35). The regulator outlet pressure even-
tually increased to about 237 psia at which time the relief valves of sys-
tem A started to periodically relieve the pressure to about 232 psia.
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Figure 14-33.- Comparison of helium supply pressure and regulator

outlet pressure following reaction control system pressurization.

The helium regulator assembly consists of two series regulators (fig-

ure 1_-36). The unit immediately exposed to the high pressure source is

designated as the primary regulator and the downstream unit as the second-

ary regulator. Both units are identical in configuration with the excep-
tion of shims which are used to determine their pressure settings. The

primary unit is set to regulate at 181 +3 psia; the secondary, at 185 -+3

psia.
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A series of tests was performed to determine lockup characteristics

of nine spare regulators under small differential pressure conditions.
The tests showed that a design deficiency in the secondary regulator does

not exist, but did not eliminate the possibility of a weak poppet spring

or sticky poppet in the Apollo 16 regulators since they were not tested
under the same conditions. Further, the test demonstrated that the flight

anomaly was the result of two discrepancies within the regulator assembly.
A matrix of the possible leakage paths is shown in table 14-I. As can be

seen from the matrix, there are 15 possible double-failure combinations
which can result in the anomalous condition observed during the flight.

Of these, the four involving only the poppets are considered probable
since the leakage was variable. A variable leak path is usually caused

by particulate contamination on a poppet seat. The particulate contamina-
tion could have been inside the regulator assembly during ground tests, but

located in such a manner that it was not dislodged by the gas flow under

1-g conditions. In a weightless condition, the contamination could have

moved and deposited between any of the poppets and their seats.
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TABLE 14-I.- MATRIX FOR POSSIBLE HELIUM REGULATOR

INTERNAL LEAKAGE

Secondary Secondary Secondary Primary Primary

regulator regulator regulator regulator regulator

pilot main guide pri- guide see- metering pin
poppet poppet mary O-ring ondary O-ring O-ring

i

Primary

regulator pilot X X X X X

poppet

Primary

regulator X X X X X

main poppet

Primary

regulator X X X X X

guide primary

O-ring

A

Because contamination during manufacture was considered to be a pos-

sibility, two regulator assemblies were disassembled and examined. Approx_

imately 90 pieces of material over 100 microns in size (fibers and parti-

cles) were found in the first regulator assembly. Over 50 of these were
found in the lubricant (Dri-lube 822) adhering to the poppets and poppet

guide assembly of the primary regulator. The rest were in the sensing
tubes and transfer tubes. The secondary regulator poppets were not checked.

Contamination consisted of about 50 fibers (paper and nylon) and some metal-

lic, plastic and unidentified hard particles. The cleanliness specification

used by the manufacturer does not allow any particles in excess of lO0 mi-
crons; however, a hard particle less than lO0 microns in diameter, if lo-

cated on a poppet seat, would cause that poppet to leak in excess of spec-

ification. The origin of the contamination could not be established. How-

ever, since the regulator was not tested after delivery, the contamination
must have been built into the component. Examination of the second regu-

lator assembly showed similar contamination.

A squib valve pressurization shock wave could damage or distort the

regulator inlet filter and allow upstream contamination to enter the reg-
ulator. A test was conducted to determine the effect of the pressure shock

on the inlet filter and an examination of the filter showed no deformation
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or damage. During the disassembly of the Apollo 16 command module regula-

tors, lubricant was found on the main poppet and corresponding pilot pop-

pet in one of the four regulators. In addition, all regulators showed

grease in the area of the main poppet spring assembly. If grease from

this area was transported to the poppet surfaces of the Apollo 16 regula-

tors, it could have acted as a trap for holding contaminants, thereby

causing leakage.

During buildup of the Apollo 16 reaction control system module, a

quick disconnect (fig. 14-37) located directly downstream of the regula-

tor outlet was replaced three times. During one change a five-legged fit-

ting (fig. 14-37) required replacement. The repairs required seven braz-

ing operations in Em area which is directly above the regulator outlet

when installed in the vehicle. Any contaminants introduced during these

operations would be trapped in the volume downstream of the regulator by
various filters (fig. 14-37). These contaminants could have been moved

around during reaction control system module installation or when the lu-

nar module ascent stage was rotated during the cleaning process. During

these operations, _my contaminants present could have been transported to

the area directly downstream of the secondary regulator primary poppet.

This volume has many areas where contaminants can be trapped (fig. 14-36).

On four occasions during quad check valve tests at the launch site,

the regulators were subjected to 5-psi backpressure with the pilot poppets

open. Backflowing the regulators has had a history of causing leakage due
to contamination. These tests were done for the first time for this mis-

sion at the launch site. Also, there may have been reverse pressurization

during checkout at the launch site. If any contamination were present at

the regulator outlet, it could have been transported into the regulator

assemblies during these tests.

The most probable cause of the leakage is contamination introduced

during component replacement and, subsequently, swept into the regulator

outlet by backflow.. There is also the possibility that lubricant existed
on the sealing surfaces to capture the contaminants.

No components have been replaced downstream of the Apollo 17 lunar

module regulators. Also, the following changes will be made to the launch

site testing to eliminate regulator backflow.

a. A quad check valve cracking test will be performed by pressuriz-

ing through the quick disconnect upstream of the regulator rather than
downstream.

b. A caution and warning limits test will be performed prior to the

regulator functional test and with the secondary regulator locked up.
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c. A test will be added to assure that the secondary regulator pop-
pets seat at low differential pressures.

This anomaly is closed.

14.2.5 Apparent Sticking Of Cabin Gas Return Valve

The crew reported hearing a chattering noise and experiencing a pul-
sating, insufficient flow in the suit circuit at 95:47 while configured to
the cabin mode of operation (fig. 14-38). Data indicate that the cabin
mode flow was normal at system activation (93:41), and this was confirmed
by the crew after the mission. The pulsing and chattering occurred again
after the demand regulator check (95:55) and after lunar landing (105:57).

The problem was traced to the cabin gas return valve which apparently
failed to open in the "automatic" position, thus blocking the cabin gas
from returning to the suit circuit. This results in "deadheading" of the
suit fan, thereby causing the downstream check valve to chatter and pul-
sate due to the small amount of flow drawn through the suit gas diverter
valve in the cabin position. The manual "open" and "closed" positions of
the cabin gas ret_n valve were used for the remainder of the mission.
The "automatic" Ix,sitlon was selected later during the lunar stay and op-
erated normally (good flow, no chatter).

Since the valve functioned properly upon activation and again late
in the lunar stay_,the apparent cause of the problem was contamination.
There are two possible areas of contamination: material on the inlet
screen or residue on the flapper seal (fig. 14-39). A suspected source
of residue is the .orangeJuice that leaked from the drink bags.

Alternate procedures are available to assure suit circuit flow if a
malfunction should occur in the cabin gas retuzm valve. Liquid entering
the suit circuit through the cabin gas return valve should not cause a
further problem since it would be absorbed in the lithiumhydroxide can-
ister.

A test will be performed on the Apollo 17 lunar module to check the
force needed to open the cabin gas return valve flapper in the "automatic"
position, thus increasing confidence in the ground checkout of the valve.

This anomaly is closed.
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Figure 14-39.- Cabin gas return valve.
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14.2.6 Loss Of Lunar Module Attitude Control After Jettison

Lunar module attitude control was lost immediately after the lunar

module was Jettisoned from the command and service module at 195:00:12.

The lunar module was to be controlled between jettison and lunar surface

impact (including the deorbit firing) with the digital autopilot of the

primary guidance system (fig. 14-40). After Jettison, telemetry showed

that the autopilot was properly issuing error signals to the attitude and

translation control assembly primary preamplifiers; however, no engine
driver commands were being issued by the attitude and translation control

assembly, as indicated by telemetry.

Any of the following conditions could have caused the problem (refer
to fig. 14-40):

a. The circuit breaker which provides the 28-volt-dc enabling volt-

age to the primary preamplifiers may have closed mechanically but not
electrically.

b. The guidance control switch may have failed.

c. The primary guidance mode control switch may have failed.

d. The in-line filter could have failed.

e. An open or short-to-ground may have occurred in the spacecraft
wiring or associated connectors.

f. The circuit breaker may have opened because of current loads in
excess of 2 amperes.

g. The circuit breaker could have been left open by the crew.

Review of flight data and failure histories has been performed and
the following conclusions reached:

a. A circuit breaker on Apollo 15 failed to make electrical continu-

ity when mechanically latched due to non-donductive contaminant between
the contacts.

b. The switches in items b and c in the preceding paragraph have

been X-rayed and no conductive contaminants observed. The toggle switches

have no failure history of non-conductive contaminants. The guidance con-

trol switch was not changed from the position it was in during rendezvous

and docking when the primary control system performed as expected.

c. Only one failure has been recorded for the in-line filter.
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d. Opens or shorts-to-ground may have occurred and a short may have
popped the circuit breaker, but it is unlikely that such an event occurred
during this time.

e. The most probable cause of the problem is that the circuit breaker

which provides 28 volts to the primary preamplifier either did not make

electrical contact (similar to Apollo 15) or was inadvertently left open.

Extensive changes to the flight plan and attendant procedural changes

were communicated to the crew. The procedural changes were correct and

were copied correctly. If the procedures for an engine hot-fire test had

been required by the ground before the crew left the lunar module, an open
circuit breaker or a system malfunction would have been detected. If a

system malfunction had occurred, however, the deorbit maneuver could not

have been executed. The deorbit maneuver can only be executed with the

primary guidance system. If a system malfunction had occured during the

manned portion of the flight, adequate system redundancy is available for
attitude control (fig. 14-40).

No corrective action is required.

This anomaly is closed.

14.2.7 Abort Guidance System Out-Of-Plane Velocity

Error Larger Than Expected

Abort guidance system data during descent revealed two abnormal con-

ditions. First, the out-of-plane component of velocity, when compared to

the primary guidance system, increased to a maximum of 28 ft/sec near lu-

nar touchdown. Second, the roll axis was misaligned after touchdown by
0.47 degree when compared to the primary guidance system roll axis. Both

of these errors are within acceptable performance limits, but they are

larger than expected and are the largest seen on any Apollo flight.

Figure 14-41 is a time history of the difference between the abort

guidance system and the primary guidance system X-axis attitude reference

during descent. The rapid error buildup during the first 2 minutes in-

dicates drift rates of up to 19 degrees per hour. No reason can be given

for these high drift rates ; however, a change in the X-axis _yro perform-

ance characteristics obviously took place. The steady drift rate of 2 de-
grees per hour during the last 8 minutes is believed to have been caused

by a shift in a mass unbalance along the X gyro spin reference axis.

Drift caused by this mass unbalance was also apparent in the data for the

lunar surface calibration (due to gravity) and during ascent (due to the
ascent engine thrust).
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The roll axis misalignment is accounted for by the higher-than-normal
drift rates during descent.

No indication of a problem existed before launch. Hardware malfunc-
tions of the gyro and associated electronics have been hypothesized in an
attempt to construct a model which would reproduce the error curve shown
in figure 14-41. The worst-case electronics failure would only produce
drift rates of 1 degree per hour compared to the 19 degrees per hour ob-
served. Mechanical failures within the gyro which would duplicate flight
results have a very low probability of occurrence. Therefore, the most
likely cause is contamination or an air bubble in the fluid between the
gyro float and case.

Settling tests have been performed on abort sensor assemblies to de-
tect contamination or air bubbles anddetermlne the best unit to install
in the Apollo 17 lunar module. No evidence of contamination or air bub-
bles was found.

This anomaly is closed.

14.2.8 Ascent Propulsion Chamber Pressure Increase and

Decay During the Ascent Firing

Approximately 157 seconds into the lunar orbit insertion firing, the
telemetry indication of the ascent propulsion engine chamber pressure re-
flected an abrupt 10-psi rise followed by a slow decay to its initial value
in i0 seconds (fig. 7-3). The phenomenon was repeated ll seconds after the
initial pressure rise.

In order for the indicated pressure rise to be real, the mass flow
rate into the engine and the vehicle acceleration must change. Examina-
tion of the engine inlet pressure measurements and the acceleration data
from the guidance and navigation system at the time of the pressure rises
did not show any change. Based upon these data and analyses, it is con-
cluded that the observed thrust chamber pressure increases were not in
the engine, and that the indication of the pressure increase was due to
instrumentation.

Analyses and tests of the transducer did not reveal any failure mode
which would cause the transients observed in the data. The only method
by which the transducer could be forced to produce similar transients was
by heating the internal strain gage diaphragm.

The diaphragm heating could not have been caused by a leak in the
sense llne or transducer since such a leak would not have sealed itself.

The heating, therefore, must have been caused by a mechanism occurring
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inside the sense line, such as decomposition of small quantities of ex-
plosive compounds deposited in the line by normal engine operation.

When the engine is fired, oxidizer flow starts at the injector about
50 milliseconds before fuel flow. At the start of the fuel flow on Apollo
16, oxidizer vapor was in the transducer and sense line at B to 6 psi pres-
sure. Since the sense line was near 70° F (based on ground tests) and the
oxidizer (nitrogen tetroxide) boils at 70° F, a film of liquid oxidizer
could have been on the sense llne walls and in the transducer sense cav-
ity.

When fuel flow was initiated, the indicated pressure increased to
the normal value of 125 psi. Since the transducer sense port is located
in an area which is cooled by a fuel vapor barrier, the sense line was
then pressurized with fuel (aerozine 50). The fuel could have then been
nitrated by the nitrogen tetroxide depositing solid explosive compounds
(such as hydrazine nitrate) on the transducer diaphragm.

The transducer temperature increases during the engine firing and
stabilizes at about 130° F after 2 1/2 minutes. At 157 seconds, when the
first pressure transient occurred, the deposits could have decomposed and
provided the necessary heat input into the strain gage diaphragm. Calcu-
lations show that decomposition of less than 2 milligrams of Such com-
pounds would cause the transients seen on the data.

Two to three milligrams of oxidizer can be introduced into the sense
line before fuel flow starts. Since this amount of oxidizer will not gen-
erate sufficient explosive compounds to damage the transducer or sense
line, no corrective action is required.

This anomaly is closed.
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14.3 GOVERNMENT FURNISHED EQUIPMENT ANOMALIES

14.3.1 Malfunction of Television Camera Monitor
In Command Module

The command module television camera monitor exhibited horizontal

bars during the initial usage. This condition cleared and performance
of the monitor was normal until the press conference telecast during the

transearth coast phase. At that time, the monitor had the same horizon-

tal lines reported during the initial usage. The horizontal-hold control

adjustment would not correct the horizontal line condition. The monitor

was turned off for approximately 5 minutes, then turned back on, after

which the monitor picture was normal.

Since the downlink television video signal was not affected, the
malfunction was isolated to the monitor and associated cable.

Postflight testing of the flight unit has shown the following:

a. Horizontal synchronization may be maintained for 90 degrees of

the 300-degree rotation range of the horizontal synchronization control.

b. The 90-degree picture synchronization range shifts as much as

30 degrees counterclockwise in the 300-degree rotation range when the unit --
is heated from ambient to 130 ° F, or when operated in a vacuum where it

heats up due to lack of convection.

c. The location of the 90-degree synchronization range within the

possible 300-degree rotation range varies as much as l0 degrees from sys-

tem activation to system activation. This condition is inherent in the

design of the monitor and was known prior to flight.

d. The optimum horizontal control knob setting is llO degrees from

the maximum counterclockwise knob position. Synchronization is lost and

horizontal bars appear when the control knob is turned 60 degrees counter-

clockwise or 30 degrees clockwise from the optimum position (fig. 14-h2).

If the horizontal synchronization control is set within 30 degrees

of the clockwise end of the 90-degree stable synchronization range at am-

blent temperature and then the unit is heated up, synchronization will be

lost. Synchronization may be reacquired by repositioning the horizontal

synchronization control; however, the repositioning must be done slowly or
the horizontal circuit does not have an opportunity to stabilize. These

conditions could have occurred in flight.
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Figure 14-42.- Horizontal synchronization knob operational range.

Thermal testing from minus BO° F to plus 132 ° F and vacuum testing

from 10-3 mm Hg to 10 -6 mm Hg has not disclosed any failures in the unit.

Circuit analysis has shown that the failure of any one of B compon-

ents in the horizontal hold (synchronization) circuit could have caused

the failure. These off-the-shelf commercial components are 2 dual diodes,

and one potentiometer that is the horizontal synchronization control. The

operating flight television monitor will be vibrated to search for any

possible intermittent condition.

History has shown fractures and contamination failures in similar

components. No corrective action will be taken. Prior to flight, it was
known that this was a commercial monitor with known contamination and

drift problems.

For Apollo 17, the television monitor controls will have warm optimum-

setting marks applied to the television monitor case.

This anomaly is closed.

14.3.2 O_gen Purge System Antenna Broke

Following ingress after the second extravehicular activity, the crew

reported that approximately 2 inches had been broken off the tip of the

antenna on the Com_Lander's oxygen purge system (fig. 14-43). The antenna

had inadvertently been left unstowed while ingressing and it is believed

that the antenna was broken when it struck the ascent propulsion system

engine cover as the Commander was entering through the hatch.
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One spare oxygen purge system antenna will be carried on Apollo 17

and will be stowed in the buddy secondary life support system bag on the
lunar roving vehicle.

Installation of the spare antenna is accomplished by clamping the

_itenna adapter to the oxygen Purge system right-hand D-ring aud connec-
ting the spare antenna coaxial connector in place of the broken _utenna's
connector (fig. 14_-L3).

The installation will be made by the other crewman when operating in
the pressurized suit condition.

This anomaly is closed.

14.3.3 Experimental Gas/Water Separator Leakage

The experimental gas/water separator was cracked and leaking; there_
fore, it was not used.

Postflight inspection showed that the fracture occurred at the base

of the threaded section of the lid (fig. 14-44) which is made of plexi-

glass. The unit was made of plexiglass for demonstration purposes. There

was no fillet radius provided in this area which results in a stress con-

centration point highly susceptible to cracking. The load which caused

cracking could haw_ been induced preflight or possibly when the device

was initially installed on the food preparation port by the crew.

No corrective action is required since this device will not be flown
on future missions.

This anomaly is closed.

14.3.]4 Wrist Disconnects Difficult to Rotate

After exposure to the lunar surface environment, the wrist ring dis_
connects on the C_mmander's and the Lunar Module Pilot's suits were hard

to rotate to the locked position and, once locked, were very difficult to

rotate out of the locked position. Lunar soil contamination is suspected
as the causes of this problem.

The wrist disconnect attaches the glove to the suit sleeve (fig. 14-45)

and is covered by a gauntlet on the glove. The gauntlet is loose fitting

around the suit sleeve and dirt can get to the wrist disconnect. Small

tolerances between the sliding surfaces are inherent in the design to make

it impossible to accidentally unlock the wrist disconnects.
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Figure 14-44.- Gas/water separator failure.

Postflight inspection of the wrist disconnects showed that lunar dust

in the clearance areas caused the problem. Rubber dust covers for the ring

disconnects which will afford better protection from contamination will be

added for Apollo 17.

This anomaly is closed.
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14.3.5 Communications Carrier Microphone Boom Tip Loose

During the co_nunications check prior to the first extravehicular
activity, the microphone audio signal from the Lunar Module Pilot's head-
set was too weak to operate the voice-operated keying circuitry in his
extravehicular communications system. This failure was attributed to a
loose end cap on the right hand acoustic tube assembly (microphone boom),
plus orange Juice blockage of the left-hand acoustic tube (fig. 14-46).
The problem was cleared during flight by pushing the right_hand boom tip
back into place and sucking out the orange Juice from the left-hand boom.

Postflight inspection of the right-hand boom by the manufacturer
showed an insufficient amount of adhesive had been applied during fabri-
cation of the tip to the acoustical tube.

Corrective action consists of a pull test to assure that sufficient
adhesive has been used in attaching the tip to the tube.

This anomaly is closed.

14.3.6 Communication Carrier Intermittent

During the transearth coast phase, the Lunar Module Pilot experi-
enced intermittent operation of his communications carrier headset ear-
phone circuit. This condition was cleared by flexing the constant wear
garment harness near the 21-pin connector (fig. 14-47).

Postflight testing involving the communications carrier umbilical
and control head, the constant-wear garment harness, and the communica-
tions carrier headset showed no hardware problem. However, a condition
was found wherein the microphone was active but the earphone was dead if
the 21-pin connector was not mated securely. The Lunar Module Pilot stat-
ed that he had disconnected the 21-pin connector several times during the
transearth coast phase.

Indications are the problem was caused because the connector was not
fully seated and the flexing of the harness seated the connector.

This anomaly is closed.

14.3.7 Retractable Tether Would Not Fully Retract

The Commander's tether would not fully retract during lunar surface
operations.
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Postflight inspection indicates that the tether is now operating;

however, there is a noticeable increase in friction (fig. 14-48) during

the retraction cycle. A thread sealant (loctite) was found on the spool

shaft, which increased the friction.

Future units will be tested for friction buildup prior to flight.

This anomaly is closed.
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14.3.8 Commander's and Lunar Module Pilot's Cuff Gage

Readings Different During Transearth Extravehicular Activity

The Commander reported that his cuff gage indicated a different

pressure from that of the Lunar Module Pilot during the transearth extra-
vehicular activity. The Commander's gage indicated approximately 3.5 psia,
whereas the Lunar Module Pilot's gage indicated approximately 3.9 psia.

The normal suit pressure should have been approximately 3.8 psia. During

the previous suit integrity check, the" cuff gages indicated approximately
the same. The crew did not read the gages again after the reported prob-
lem.
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The cuff gage (fig. 14-49) is a bellows-actuated aneroid-type mechan-

ical gage which indicates differential pressure and has an accuracy of

+0.i psia. The gage opening to the outside of the gage is protected by

a centered plug. When the bellows is pressurized, it lifts the rocker arm,
rotating the rocker in its pivots. The other arm on the rocker then rotates

the rack assembly, causing the pinion gear and pointer to rotate.

Bellows

k
Return Gear

Figure 14-49.- Cuff gage mechanism.
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During postflight testing at ambient and vacuum conditions, both the

Commander's and the Lunar Module Pilot's gages read well within 0.i psi of
the 4.0 psi to which they were pressurized.

Both gages were disassembled and inspected. No discrepancies were

found. Minor contamination was found, some particles as large as 0.001 to

0.002 inch, but none were large enough to interfere with the operation of

the gage mechanism. Leak tests on the bellows were also performed and the

results were well within specification.

There are two possible explanations for the low reading. The first

is that a contaminant particle large enough to resist the movement of the

mechanism temporarily became caught in the gear train. The particle could

have been lost during disassembly. The second possibility is that the
gage was misread.

Before final assembly, the gage is completely cleaned with freon and

dried. Since the cleanliness procedure is satisfactory and no anomaly

could be found in the flight gage, no corrective action is required.

This anomaly is closed.

14.3.9 Extravehicular Mobility Unit Maintenance Kit

In Command Module Expanded

The crew commented that the kit in the command module appeared to
have expanded more than the kit in the lunar module, and that the wet

wipes were the items which had expanded. This condition made it more
inconvenient to handle the kit.

Two extravehicular mobility unit maintenance kits are carried aboard

the spacecraft: one is stowed in a rigid locker in the command module and

one in a Beta cloth helmet stowage bag in the lunar module. Three flat

pockets, each containing two wet wipes for visor anti-fog treatment, are

provided in each kit. Before placing in the kit, the wet wipes packets

are evacuated to 1.5 psia and the packet is double heat-sealed. This is

done to reduce the size for packing and to reduce ballooning.

The individual packets are vacuum checked for leaks which would allow

the wipes to dry out. This check has also indicated that packet pressure

is approximately 7 psia as a result of film permeability, outgassing, etc.
Therefore, some expansion can be expected at 5 psia.

The Apollo 17 crew has been familiarized with the expansion to be

expected. Some variation in expansion can be expected. Expansion does
not create a problem, so no corrective action is required.

This anomaly is closed.



14-78

14.3.10 Purge Valve Pin Came Out

On three occasions during the first extravehicular activity, the pin

assembly (red apple) of the Commander's purge valve was accidentally re-

moved while ingressing or egressing the lunar roving vehicle. Each time,

the assembly was found and reinserted. During subsequent extravehicular

activities, the crew wore their purge valves rotated from the recommended

position to prevent the pin from being pulled out.

Testing indicates that the lunar rover lap belt buckle could be the

cause of the purge valve pin being accidentally removed.

A modification has been made to eliminate the barrel actuator spring

in the purge valve and to shorten and stiffen the pin assembly lanyard.

This modification will require manual pull-out of the purge valve barrel,

and will provide less chance of the red apple and lanyard being snagged.

This anomaly is closed.

14.3.11 Tool Carrier Fell Off Portable Life Support System

During the preparation inside the lunar module for the first extra-

vehicular activity, the tool carrier harness became disconnected and fell

off the portable life support system.

The harness is held together by a quick-disconnect snap buckle which

has a spring-loaded release pin (fig. 14-50). Only a small force (5 lh)

on the release strap is required to move the pin. The pin was inadvert-

ently pulled during the cabin activity.

The pin spring has been changed to increase the pull force required

to between i0 and 20 pounds so as to avoid inadvertent actuation.

This anomaly is closed.

14.3.12 Watch Crystal Missing

At depressurization, just prior to the third lunar extravehicular ac-

tivity, the Lunar Module Pilot noted that his chronograph crystal was gone.

The chronograph hands and face were not hit. However, about 12 minutes

later the movement stopped. Most likely, warpage caused by thermal cycling

allowed the differential pressure across the acrylic crystal to pop it out

of the case. The exposure to and penetration of lunar dust contamination
about the Lunar Module Pilot's sleeves probably caused the failure of the

chronograph movement,
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These chronographs are certified to a maximum temperature of 160 ° F.
Testing has demonstrated that in the range of 190 ° F, the crystal is weak-

ened to the point where internal pressure can push the crystal off. For

the chronograph to reach a temperature of 190 ° F, direct continuous expo-

sure to incident solar radiation normal to its surface is required for ap-
proximately 12 minutes.

These chronographs are tested at the Manned Spacecraft Center when

received, again before shipment to the Kennedy Space Center and again Just

prior to flight. The Apollo chronograph is a secondary timing device and

is not critical to mission success or crew safety. There are no plans for
corrective action.

This anomaly is closed.

jf
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14.4 LUNAR SURFACE EXPERIMENTS EQUIPMENT ANOMALIES

14.4.1. Heat Flow Experiment Cable Broke

The Commander's legs became entangled in the heat flow experiment
cable near the central station and his movements resulted in the cable

breaking at the connector to the central station (at the connector board
solder joints); however, the central station did not move. Loss of the
connection to the central station resulted in loss of the heat flow ex-

periment.

The heat flow experiment is stowed on subpackage 2. Upon arrival at

the Apollo lunar surface experiments package deployment site, the experi-

ment is removed from the subpackage and the electrical ribbon cable is con-

nected to the central station by an Astromate connector (fig. 14-51). The

cable is bonded and soldered to a printed circuit board which is clamped

in a connector. The cable-to-board joint is reinforced by two to four

thicknesses of 0.5-mil Kapton tape.

Pull tests performed on the eable/Astromate connector configuration

indicate the strength at the cable/board interface was 31 pounds. A mod-

ified Joint assembly (fig. 14-52) which provides for strain relief and has

a pull strength of over 10O pounds will be used for the heat flow experi-
ment connector and similar connectors on Apollo 17.

This anomaly is closed.

14.4.2 One Stake on Mortar Package Did Not Deploy

The lanyard pulled the release pins from three of the four spring-

loaded hinged stakes on the mortar package pallet and these three deployed

normally. The release pin for stake 3 was bent and jammed so that it could
not be pulled out. The pallet was emplaced with the three stakes pressed

into the lunar surface, and the crew reported the complete mortar package

and pallet assembly was stable.

The mortar package pallet assembly includes four 7-inch long stakes

(fig. 14-53) which deploy normal to the pallet when the release pins are

removed. When the pallet is properly positioned, the stakes are pressed

into the lunar surface to provide additional stability to the platform.

Tests performed during the development of the pallet assembly showed

three deployed stakes are adequate to provide stability.
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Figure 14-51.- Heat flow experiment connector.

No corrective action is required as the experiment is not scheduled
for another mission.

This anomaly is closed.

lh.h.3 Mortar Box Roll Angle Telemetry Indicated Off-Scale High

The telemetry indication of the active seismic experiment mortar box

roll angle has been off-scale high since initial activation of the telem-

etry high-bit-rate mode after turn-on. The indication suggests the pack-

/ age rolled to the right between 25 ° and 145 °. However, the position of
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Figure 14-52.- Modified heat flow experiment connector assembly.
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Figure 14-53.- Bottom view of active seismic

experiment mortar package pallet.

the bubble in the level indicator observed by the crew showed that the

mortar package was less than 5° off the nominal in combined pitch and

roll. The pitch angle sensor data indicated a pitch angle of minus 2.7 °

and photography confirms that the alignment was satisfactory. The off-

scale reading therefore indicates a failure of the sensor circuit.

The sensor circuitry includes a free-running multivibrator, with the

pulse-width ratio controlled by the sensor which functions as a potenti-

ometer (fig. 14-54). Numerous failure possibilities in the circuit, such
as open transistors, shorted capacitors, and open solder Joints could have

caused failure of the multivibrator and the off-scale high reading.

No corrective action is required as the experiment is not scheduled
for another mission.

/

This anomaly is closed.
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Figure 14-54.- Roll or pitch angle sensor electronics.

14,4.4 Cosmic Ray Detector Panel 4 Shade

Partially Deployed and Lanyard Broke

The Commander pulled the red-ring lanyard to shift the shade in

panel 4. The shade moved only i inch instead of about 3.5 inches and

the lanyard broke.

A movable platinum shade (fig. 14-55) covers the top half of panel 4

during translunar flight and until after the radioisotope thermoelectric

generator is removed from the area during lunar surface operations. The _.
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Figure 14-55.- Panel 5 with partially deployed shade.

/
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shade passes over a round guide bar at the top of the instrument (see fig.

14-56) and is connected in the back of the panel to the movable target

plate. The red-ring lanyard is attached to the bottom edge of the target

plate and, passing behind panels l, 2, and 3, it extends from the bottom

of panel 1. When the lanyard is pulled down, the target plate moves down

and the platinum foil moves upward over the round guide bar. This exposes

material mounted on the stationary backplate.

Examination of the panel assembly has shown that the failure of the

shifting mechanism was caused by a clamping of the target plate by two

retention bar screws which projected past the backplate into the target

plate, and effectively locked it in place (fig. 14-57).

Figure 1_-56 shows the panel _ assembly with the target plate and

shade fully deployed after having backed off the two projecting screws.

Note the rub mark from the screws on the target plate.

The assembly performed satisfactorily when deployed during the pre-

flight fit and function check. However, it was necessary to refurbish

the hardware after this operation, and the screw clearances may have
changed as a result of the refurbishment.

This experiment is not scheduled for another mission.

This anomaly is closed.

14.4.5 Vertical Staff of Gnomon Separated From Leg Assembly

When the gnomon (fig. 14-58) was being unstowed from its stowage bag

during the second extravehicular activity, the leg assembly remained in

the bag, and the vertical staff came out separately. The leg assembly,
because of its color scale, was used during the rest of the lunar surface

photographic operations. The primary function of the complete gnomon is

to indicate the local vertical in lunar surface geology photographs.

The staff can be separated from the leg assembly by backing out the

gimbal pivot screws. However, all four screws must be backed out (fig.

14-59). There was no indication in the photographs of any screws backing
out. During ground operations, a staff separated from the leg assembly

by breaking the inner gimbal pivot pins. The break occurred where the

0.040-inch-diameter pivot pin is pressed into the pivot screw.

The pivot assembly consists of standard high-speed steel reamer blank

material pressed into a stainless steel adjusting screw or retainer. The

reamer blank material provides the high strength and hardness required,
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Figure 14-56.- Panel 4 target plate and fully deployed shade.
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Figure 14-57.- Panel 4 screw interference

but has a tendency to be brittle without additional tempering. In addi-
tion, the combination with stainless steel can be conducive to stress

corrosion. Either, or a combination, of the two conditions is considered

as the most likely cause of the anomaly.

Pivot pins for the Apollo 17 gnomon will be given the additional
tempering required for greater toughness, and a thin film of oil will be

applied for protection against corrosion. Ground tests have shown the
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I

Figure ih-58.- Gnomon assembly.

f
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Figure 14-59.- Gnomon gimbal assembly

damping will be unaffected. Assembly of the pin in the screw will be de_

layed until as late as possible before launch so as to reduce the time

for possible stress corrosion to occur.

This anomaly is closed.

14.4.6 Documented Sample Bag Dispensers Fell Off

70-mm Camera Brackets
i:

During the geology activities on the lunar surface, the bag dispenser

assemblies repeatedly fell off the brackets on the 70-mm cameras.

The dispenser is mounted on an adapter (fig. 14-60) which is inserted

in the ring-sight tee-slot bracket on the camera. The adapter-to-tee slot

interface is horizontal and depends on springs in the tee slot to hold the

adapter in the latched position. This latching method is inadequate.

The adapter has been redesigned so as to provide a positive lock in

the installed position as shown in figure 14-60.

This anomaly is closed.
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Figure i_-60.- Sample bag dispenser retention.
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14.4.7 Screws and Holding Ring Came Off One of the

Documented Sample Bag Dispensers

The three screws which fasten the bag ring to the bracket plate had

come out on one of the documented sample bag dispensers and consequently
came apart when unstowed.

The three flat-headed stainless steel screws mate with threads in the

aluminum ring (fig. lh-61). The heads are staked to the aluminum bracket

plate. Thread sealant materials are not permitted because of the possi-
bility of lunar sample contamination.

The Apollo 17 dispensers will be re-inspected to assure proper stak-

ing of the screws and tightness of the threads in the aluminum ring.

This anomaly is closed.

supportring

bracket

head
screws(3)
stakedto
bracket

Sample
pocket

Figure 14-61.- Documented sample bag dispenser assembly.



14,4.8 Sample Collection Bag Fell Off the

Portable Life Support System Tool Carrier

During lunar surface operations, the Commander's sample collection

bag came loose from the portable life support system tool carrier several
times and fell off' once.

The sample collection bag essentially consists of a Teflon bag on a

metal frame (fig. 14-62). The bag opening is covered by a Teflon lid on

a hinged metal frs_e. Attached to the metal frame on one side of the bag,

about 2 inches below the lid, is a 3/8-inch-wide stainless steel strap with
offsets to accomodate the two hooks on the tool carrier. About i inch from

the bottom of the same side is a 1-inch-wide Teflon band, sewn to the hag,

with an offset loop approximately I inch by 5 inches to accomodate the

Velcro strap from the bottom of the tool carrier. The Velcro strap, when

tightened down, keeps the bag from floating or bouncing off the hooks.

During the lunar roving vehicle operations, the Velcro strap sometimes

loosened because of the entrapped lunar dust so that the bag could come
off.

For Apollo 17, the sample container bag hooks that are attached to

the portable life support system tool carrier have been redesigned to pre-

vent the bag from floating or bouncing off the portable life support sys-

tem. The new hook design consists of a flat spring and a stop so that
the same force is required to install and remove the bag.

This anomaly is closed.

14.4.9 Lunar Surface Far Ultraviolet Camera Azimuth

Adjustment Became More Difficult

Rotating the camera assembly for each azimuth setting was more dif-

ficult than expected, and became progressively difficult during the lunar
stay.

To adjust the azimuth to the proper dial reading, the camera is ro-

tated on a 12.5-inch diameter ball-bearing ring (fig. 14-63). The bear-

ing is not sealed; however, the crew did not observe any lunar dust on the
bearing.

The azimuth ring bearing was packed with a waxy, low-outgassing grease

which stiffens appreciably at temperature below 50° F. This grease is nor-
mally used as a sealant rather than a lubricant. The camera was intention-

ally kept in the shade to protect the film from high temperatures. As a

result, the grease stiffened. The manual azimuth adjustment operation was

not included in cold chamber tests with other operations of the camera.

f
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Figure 14-62.- Sample collection bag on portable life

support system tool carrier.



14-95

outer

Figure 14-63.- Far ultraviolet camera.
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The difficulty was caused by the use of the wrong type of grease in
the azimuth ring bearing.

The experiment is not scheduled for another flight, and no further
action is required.

This anomaly is closed.

14.4.10 Velcro Patch Came Off Both Padded Sample Bags

When the crew wrapped the Velcro strap around each of the padded
sample bags to further secure them, the Velcro attachment patches came
off the bags and the straps were ineffective.

A 20-1nch-long wrap-around Velcro pile strap is provided to hold the
bag closed in addition to the usual tab closure (fig. 14-64). One end of
the strap is bonded _ith a fluorel adhesive to an etched Teflon patch which

Velcropile stra
Velcrohook

Tab closur=

EtchedTeflon patch

CORRECT
BONDING
ADHESIVE

Paddedsample
bag (Teflon)

Figure 14-6_.- Padded sample bag.
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is heat-sealed to the Teflon bag. A Velcro hook patch is bonded to the
etched Teflon patch with a pressure-sensltlve adhesive and provides the
attach point for the other end of the strap. The peel strength of the
pressure-sensltlve bond was less than that of the Velcro pile-to-hook con-
nections. Consequently, when the Velcro strap was adjusted to the proper
tension, the hook patch came off the bag.

The problem resulted from using the improper bond material for the
Velcro hook patch.

This equipment is not scheduled for another flight and no further
action is required.

This anomaly is closed.

14.4.11 Loop Came Off Lanyard for
Penetrometer Stowage Release Pin

When the Commander was unstowing the penetrometer, the end of the
lanyard loop pulled out of the swaged Joint. The pin was pulled by _Tap-
ping the wire around the gloved hand.

/ There were 71 lanyard assemblies on the lunar module, of which nine
were made with 3/64-inch cable, and the rest with 1/16-inch cable. The
lanyard with the pulled-out loop was made with B/64-1nch cable.

A condition similar to the one experienced by the Commander was sim-
ulated by utilizing a B/64-inch cable, a B/64-inch-diameter sleeve, and
a 1/16-inch-dlameter crimping device.

The nine lanyards made with 3/64-inch cable are to be changed to
1/16-inch cable and pull-tested. The existing 1/16-1nch-cable lanyards
will also be pull-tested in cases where the pull pin cannot be pulled
without the lanyard.

This anomaly is closed.

14.4.12 Active Seismic Experiment Pitch Sensor Indicatad
Off-scale High After Launching the Third Grenade

Immediately prior to launching the third grenade, the pitch sensor
indicated that the mortar package assembly was pitched down about 8° from
the nominal plus 45° elevation (fig. 14-65). Within 2 seconds after fir-
ing the mortar, the sensor indication was off-scale-high and has remained
off-scale-hlgh.

/
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Figure lh-65.- Pitch movement of mortar package assembly.
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Based on ground tests during which the assembly was rotated through

360 °, an off-scale-high indication means either that the mortar package

assembly is pitched up between 25 ° and 155 ° above the normal plus 45° ele-

vation, or that the sensor has failed. There are two stable positions of

the mortar package and pallet assembly between these two points: (i)

pitched up 30° above normal (75° elevation), and (2) pitched up 135 ° above
normal (180° elevation). The temperature profiles for the two temperature

sensors on the mortar package assembly, when compared with the calculated

temperature profiles for elevations of 45° and 75° , indicated that the
mortar package assembly was not in the 75° elevation position. In the

180 ° elevation position, the receiving antenna would have been broken off

or badly bent and ]_ing on the ground. In this case, complete real-time
event data would not have been received during the flight of the third

grenade. However, complete real-time event data were received during the
entire 19-second f]_ight, indicating that the mortar package assembly was

not in the 180 ° elevation position.

The pitch and roll sensor circuits are identical (sec. 14.4.3), and
there are numerous failure possibilities in the circuit (such as open tran-

sistors, shorted c_acitors, and open solder Joints) which can cause fail-
ure of the multivibrator, and result in the off-scale-high indication.

It is most likely that there is a failure in the pitch sensor circuit,
and the orientation of the mortar package is unknown.

No corrective action is required as the experiment is not scheduled

for another mission.

This anomaly is closed.
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14.5 ORBITAL EXPERIMENT EQUIPMENT ANOMALIES

14.5.1 Mapping Camera Extend/Retract Times

Were Abnormally Long

The first mapping camera extension was normal, but the retraction

required 2 minutes and 54 seconds. The normal time for extension or re-

traction is approximately i minute and 20 seconds. The second and third

extensions and retractions required about 3 minutes, but the fourth re-
traction and fifth extension were both normal at i minute and 18 seconds.
The fifth (final) retraction time was i minute and 34 seconds.

This anomaly is similar to the Apollo 15 problem in that the times of

the first extension and retraction were normal and subsequent times were

excessive, with some in excess of 4 minutes. In addition, the Apollo 15

camera would not retract after the final (15th) deployment. Subsequent

investigations did not isolate a probable cause of that anomaly.

Deployment rails attached to the bottom of the camera slide through

ball-bushings that are part of the deployment mechanism (fig. 14-66). De-

ployment of the camera is accomplished by the drive screw turning within
the drive nut, which is bolted to the camera. Friction in this screw-nut

drive is minimized through the use of recirculating streams of ball bear-
ings riding between the threads of the nut and screw.

Two redundant motors, each capable of deploying the camera should

the other fail, power the drive screw via a drive train consisting of

clutches, gearing, and a "no-back" device that locks the deployment mech-

anism when power is removed from the motors. The motors, clutches, and
most of the gearing are contained within the gear box. Two clutches are

used, one with each motor. Their design is such that, should a motor
seize, its clutch will decouple from the drive train. The clutches con-
tain bearings that are lubricated with a mixture of silicone oil and

grease; therefore, a test was conducted to determine the effect of con-

tamination of the friction surfaces by the lubricant. The result was

that lubricant applied directly to the friction elements did not signif-
icantly affect the clutch performance.

Preflight deployment operations had disclosed a chattering noise in

the mechanism when the retraction was aided by the pull of the cable har-

ness to the camera. An analysis of the drive train indicates that a state

of dynamic instability may exist in a zero-g environment because of the

resultant loss of the damping provided by the deployment rail friction.

Simulated zero_g tests are being conducted by suspending the camera with

a long cable in order to remove the weight from the rails while maintain-

ing the inertial properties of the camera during the deployment.
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ball
bushing assembly

Figure 14-66,-Mapping camera deployment mechanism.

A separate anomaly report will be published upon completion of analy-

sis and testing.

This anomaly is open.

14.5.2 Mapping Camera Stellar Glare Shield Failed to Retract

The Co_nand Module Pilot observed that the glare shield for the

stellar camera was jammed against the handrail paralleling the scientific

instrument module b_ (fig. 14-67) during the trsmsearth extravehicular

activity. In the 16-mm photography of the extravehicular activity, the

outermost edge of the folding tip of the glare shield is visible above

the handrail, in the fully-extendedpositi0n as shown in figure 14-64.

Scientific instrument module bay photographs taken from the lunar

module indicate th_ the glare shield was proper]_ retracted at rendez-

vous; therefore, the failure to retract occurred at the third, fourth,

or fifth (last) camera retraction. A review of the stellar film indi-

cates that this anomaly did not affect the stellar photography.

Glare shield deployment is accomplished by a rack-and-plnlon mech-

anism that is connected by gearing to a rack on the camera deployment
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Figure 14-67.- Mockup photograph of glare shield handrail.

mechanism (fig. 14-66). As the camera is deployed from the scientific

instrument module bay, the glare shield is automatically ektended out-

ward from the stellar camera. Two sets of miter gears are utilized.

Both sets are located within the camera body. Each set contains a steel

gear and an aluminum gear.

During the inspection of the exposed film prior to processing, nu-

merous aluminum particles were found wound up with the film. Analysis

of the chips indicated they were 6061 alloy rather than the 2024 alloy

of the gears, showing a source other than the gears.

Since the glare shield deployment mechanism is driven by the camera

extend/retract action, useful information related to this anomaly may be

obtained from the camera zero-g tests being performed.

A separate anomaly report will be published upon completion of anal-
ysis and testing.

This anomaly is open.
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14-5.3 Laser Altimeter Output Power Degraded

The laser altimeter performed normally during its first operating

period - 41 minutes during lunar revolutions 3 and 4. Evidence of laser

degradation began to appear early in the second operating period (revo-

lution 16). The pulse forming network voltage controller began stepping

to voltage position i (step 0 is the initial setting), and the laser out-

_ put power, when in step 0, was occasionally too low for ranging - as man-

ifested by altitude readings of zero meters and an overflowing range

counter. For this period, altitude data validity was about 68 percent;

i.e., approximately 32 percent of the data was "zero".

The degradation rate appeared to be rather constant during the next

three operating periods, with voltage step 4 appearing near the end of the

fifth period (revolution 47). During the sixth operating period (revolu-

tion 60), the degradation appeared to accelerate and the pulse forming net-

work voltage controller reached step 5, the highest available step, by the

end of this run. In step 5, maximum voltage is delivered to the flashlamps

which "pump" the laser ruby. During the last scheduled operating period

(revolution 63), laser output degraded to the point that no further alti-
tude data were obtained.

There were approximately 2400 laser operations (firings) during the

mission. The laser output appeared to degrade more rapidly than during

the Apollo 15 mission (fig. 14-68) but was compensated by the action of

the pulse forming network voltage controller added for this purpose as

a result of the A_ollo 15 anomaly. The voltage controller consists of a

laser power status sensor (photodiode) located inside the laser module

and associated circuitry to increase the output of the pulse forming

network power supply if the sensed laser power is lower than a pre-estab-
fished threshold.

Compensation was sufficient until the last 40 minutes of the final

scheduled operating period. After this time, laser output was apparently

_. too low for ranging against the sunlit lunar sz_face. One consequence of

the pulse forming network controller operation was some loss of altitude

data on alternate laser firings ; therefore, data validity was only about

70 percent during most of this mission. Had the controller not been added

to this unit, the amount of valid data obtained would have been signifi-

cantly less. An estimate of the data that would have been obtained is

shown in figure 14-68. The controller operates to increase input power

to the laser if the laser output on the preceding operation was low, and

to decrease input if the output was high. It appears that the threshold

may have been low, or the voltage steps too large, so that inadequate out-

put was obtained on the lower step, resulting in loss of altitude data.

This was particularly true on illuminated portions of the lunar surface

where background radiance decreases receiver sensitivity.

/
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Figure 14-68.- Laser degradation versus operating time.
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Analysis of the Apollo 15 failure indicated that the most probable
cause was contamination of the internal optical surfaces by oll from the
Q-swltch bearings (fig. 14-69). Consequently, a delta qualification test
was performed on a laser module, using new bearings incorporating oil-re-
tainer shields. The qualification test consisted of a 220-hour thermal
vacuum test which included a 50.5-hour mission operation timellne. Over
9000 laser firings were performed and the voltage controller had only
reached step 4 by the end of the test.

Since the Apollo 16 laser also incorporated these new bearings, sim-
ilar improved performance was expected during the mission. The number of
prelaunch discharges was limited, however, to conserve laser life so the
rapid laser degradation was not detected before launch.

The plots of d_ta validity versus operating time in figure 14-68 are
approximate in that the effects of laser module temperature and lunar sur-
face illumination have been averaged out. During the first ll hours of
laser operation during Apollo 15, the command and service module was in
a highly eccentric orbit which, due to the range limitations of the laser
altimeter, caused tlheloss of approximately 50 percent of the altitude
data. Since the data loss was not due to a hardware malfunction, the
curve for Apollo 15 is drawn at 100 percent during this period.

Contamination of the optical surfaces within the laser module is con-

sidered to be the most likely cause of the degradation. A secondary cause
is the degradation of the flashlamps because of discoloration of the lamp
quartz as the result of the repeating high intensity light flashes and im-
purities in the quartz. The lubricant in the Q-switch motor and rotor

bearings is apparently the principal source of contamination. Bearing
life tests indicated that elimination of the oil reservoir in the bearings
by the use of oil-lmpregnated bearings does reduce oil migration. Conse-
quently, the ApollO 17 laser module will be modified to incorporate Q-
switch bearings wi_h oil-impregnated ball retainers and selection of flash-
lamps using a high purity quartz which is not as subject to degradation.
Cover plates, installed over both access openings to the motor coupling,
will complete the enclosure of the motor bearing.

This anomaly is closed.

14.5.4 Panoramic Camera Automatic Exposure Control
Indicated Low Light Levels

The panoramic camera contains a light sensor and associated circuitry
that determines the film exposure. As the scene luminance decreases, the
output from the sensor decreases ; the resulting signal delivered to the
sllt width servo causes the exposure sllt to widen, thereby automatically
increasing the film exposure. The slit width and the light sensor output
are both telemetered (fig. 14-70)./
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automatic exposure control.

/

Throughout the mission, telemetry indicated that the sensor output

was too low, resulting in a slit width that was too wide. Consequent]y,
an overexposure of the film occurred. Based upo n preflight brightness

calculations and re_l-tlme mapping camera exposure data, the degree of

overexposure was estimated to be approximately 1-1/2 to 2 f-stops. As a

consequence, the filLm processing was modified to compensate for this de-

gree of overexposure°

The problem Collld have been the result of contamination on the sensor

optics or a failure in the light sensor or its associated circuitry (fig.

14-71). Analyses _nd tests have shown that component open or short cir-

cuit failures could not have caused the problem since the amount of over-

exposure could not be duplicated. Feedback capacitor leakage (equivalent

to about 6 megohms 3eakage resistance), or a decrease in the gain of the

photodiode input am[plifier (an integrated circuit), or a decrease in pho-

todiode sensltivity, shown in figure 14-70, could have caused the problem.

These components, however, have no previous history of these types of fail-

ures; therefore, no corrective action will be taken.

A review of data indicates that the problem occurred preflight, at

some time between January 5, 1972, and February 25, 1972. The failure
was not detected because the test merely ascertained that the light sen-

sor responded to stimulation (a light source placed in front of the sen-

sor). Although sensor output voltage was recorded, no voltage tolerances
had been established for the test.
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Figure 14-71.- Panoramic camera light sensor assembly.

To preclude a similar problem not being detected in ground testing,
sensor output voltage limits have been added to the test procedure.

This anomaly is closed.

14.5.5 Erratic Laser Altimeter Photomultiplier Tube Voltage

During the revolution-60 operation of the laser altimeter, the high
voltage supply for the photomultiplier tube was occasionally erratic.

During the next operating period (revolution 63) the erratic behavior be-
came more pronounced (fig. 14-72), and there were several instances when

the voltage failed to rise from the quiescent (idling) level.

The photomultiplier tube power supply idles at approximately minus
700 volts during the periods between laser firings. About three-fourths

of a second before the laser fires, the power supply is commanded to in-

crease its voltage to the value required for proper photomultiplier tube

operation. This value is determined by automatic gain control circuitry
(fig. 14-73) that senses the background illumination from the lunar sur-

face. As a result of the automatic gain control action, the photomulti-

plier tube voltage varies during the mission and appears somewhat noisy,
as evidenced by the normal trace (revolution 38) shown in figure 14-72.

The revolution-63 trace is unusually erratic, however, and failure to

rise from the quiescent level is indicative of anomalous operation.
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Some of the anomalous voltages which occurred during revolution 60

were probably caused by sunlight reflecting off the deployed spectrome-

ters. Although the spectrometers were not in the field of view of the

altimeter receiver optics, reflections from the spectrometers may have

been reflecting from the altimeter's gold-plated lens barrel and, thence,

into the photomultiplier tube, thereby unduly affecting the automatic

gain control action. This does not, however, explain the revolution-63

performance, because the mass spectrometer had been jettisoned and the

gamma-ray spectrometer was not deployed.

A number of intermittent conditions are possible that could either

increase the gain of the photomultiplier amplifier or couple electrical

noise into the amplifier's input. Either of these occurrences could
cause the effects observed in the data. An intermittent condition could

have been caused by the cyclic thermal environment that occurs as a re-
sult of lunar orbit operation. Since qualification test results and ac-

ceptance tests are considered to be adequate for this equipment, no cor-
rective action will be taken.

This anomaly is closed.

14.5.6 Overexposure of Nine Frames of Mapping
Camera Metric Photographs

Nine frames of mapping camera metric photography were overexposed.

The overexposures were single events dispersed throughout the film. Most

overexposures occurred when the shutter was being CO,handed to a slower

speed by the automatic exposure control because of decreasing scene lum-

inance. Instead of going to the next slower speed, the shutter would

drop to an even slower rate for one frame and then return to the proper
rate for the remainder of the frames.

Shutter speed is controlled by a photo cell which senses the light
level in the camera's field of view. The photocell operates in a servo

system which controls shutter speed. The photocell servo system consists

of the photocell, a comparator, a voltage reference, and a seven-stage

shift register, as shown in figure 14-74.

The complete operational sequence of the photocell servo is as fol-

lows: Assume that the reflected lunar surface light level is decreasing,

thus, the photocell output voltage is less than the reference voltage.

The comparator supplies a continuously decreasing signal to the shift

register, thus enabling the register to shift the "on stage" toward the
slower shutter speed. A group of six clocking pulses are supplied to

the register once before each film exposure (about every 20 seconds).

When the first clocking pulse appears, the on condition is shifted one
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stage. The register then causes the reference voltage to decrease one
step. If the photocell output is still less than the ne_ reference volt-

age, the second clocking pulse will shift the on condition to the next

lower stage in line in the shift register. This sequence will continue

until the difference between the photocell output voltage and the refer-

ence voltage is within the dead band of the comparator, at which time

the comparator output sigaal to the shift register will disappear and

the register will stop shifting. The shutter speed will then be deter-

mined by which stage of the shift register is in the on condition.

The seven shift-reglster stages correspond to seven shutter speeds

with the first corresponding to the fastest speed, and the seventh cor-

responding to the slowest speed. The logic is designed such that at ini,

tial camera turn-on or whenever either of two invalid logic conditions

exist (all stages off or more than one stage on), the fifth stage is
turned on and all others are turned off.

Noise voltage pulses can set or reset (turn on or off) any stage in

the register regardless of the condition of any other stage. Thus, more

than one stage could be on at the same time, and, in this condition, when

the first clocking pulse occurs, the logic would turn stage five on and

all other stages off. The remaining five clocking pulses then could still

shift to the on stage required by the light level seen by the photocell

and no anomalous operation would result. Should the noise pulse occur -

during the clocking cycle, however, there may not be enough clocking
pulses left to shift the on condition back to the required stage. Since

the effect of the noise pulse is to shift the on condition to stage five,

slow shutter speed and overexposure can be expected to occur more often
than fast shutter speed and underexposure.

Noise voltage on the power supplied to the register or generated by
some intermittent condition in the camera must have switched one or more

stages in the shift register on or off. The camera qualification test

results and acceptance tests are adequate. No corrective action is nec-

essary.

This anomaly is closed.

Ih.5.7 Contaminated Mapping Camera Film

A considerable amount of contamination was found throughout the met-

ric and stellar film from the mapping camera during the pre-processing

inspection. Special cleaning procedures were developed and successfully

used in removing a majority of these particles prior to film development.
Consequently, the photography was not compromised.



14-113

The contamination included many types of particles, most of them be-

ing metal chips of various sizes and shapes (fig. 14-75). There were

also a few particles which appeared to be paint chips.

Analysis of several of the metallic chips with a scanning electron

microscope indicated that the chips were an aluminum alloy.

The camera frame and cover are aluminum; however, consideration of

the camera and cassette mechanisms plus visual examination of the parti-

cles indicate that the contamination was not caused by wear in the camera

Figure 14.-75.- Metal particles found on mapping camera film.
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or cassette, but was more likely, either residue from manufacturlngor
introduced from some outside source,

The Apollo 16 camera and cassette were tumbled and cleaned at the

contractor's facility, and the camera again tumbled and cleaned at the

Kennedy Space Center. Contaminate particles were removed in each case.

It is possible that some additional particles remained entrapped until

the prolonged exposure to the zero-g environment during the mission.

More thorough cleaning and inspection procedures are being imple-

mented for Apollo 17. In addition, the special cleaning procedures which

were developed for the Apollo 16 film will again be used with the Apollo
17 film.

This anomaly is closed.
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14.6 LUNAR ROVING VEHICLE ANOMALIES

14.6.11 Electrical System Meter Anomalies

The lunar roving vehicle experienced the following electrical system

meter anomalies at initial powerup during the first extravehicular activ-

ity:

a. Battery 2 voltmeter indicated off-scale low.

b. Battery 2 ampere-hour meter indicated off-scale low.

c. Battery 1 and 2 temperature meters indicated off-scale low.

Later, during the second and third extravehicular activities, anomalous

conditions were experienced. The battery 2 ampere-hour meter showed an

increase in ampere-hours and the battery 1 temperature meter showed a

decrease in temperature to off-scale low.

The circuitry associated with the electrical system meters is shown

in figure 14-76. Note the multiple wire-crimp splices in the system. The
return for the volt/ampere meter is connected to the battery return with

a five-wire crimp splice containing one 12-gage wire, one 20-gage wire,

and three 22-gage wires. This splice was associated with the electrical

modification made on the Apollo 16 lunar roving vehicle at the launch site.
An intermittent connection at this splice would explain the volt meter

reading off-scale 1¢_ and then later reading properly. An open connection

at this splice would reverse the polarity on the ampere-hour integrator

sense line and give a false indication of battery 2 charging as observed

during the second and third extravehicular activities (see fig. 14-77).

Also, the battery 1 ampere-hour meter indicated a 20-ampere-hour decrease

rate which was greater than predicted. However, a review of the data shows

that the current readings taken during this period of time were correct and

a 20-ampere load was present. Therefore, the ampere-hour integrator for

battery 1 was working properly.

Both battery temperatures reading off-scale low and then reading prop-

erly could be caused by an intermittent connection at the four-wire splice

(fig. 14-76). However, this would require a simultaneous open circuit at

two splices initially, which later corrected themselves, and finally, fail-
ure of a single splice in the battery 1 temperature circuit.

The second possibility is that two circuit breakers were not closed

electrically, resulting in no power to the temperature meter circuits and

ampere-hour integrators. This would also explain the battery 2 ampere-

hour integrator reading off-scale low, but would not explain the battery 1

,f
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ampere-hour integrator reading full-scale, unless a sneak circuit existed.

This sneak circuit must result from anopen circuit at the flve_wire splice

in the battery 2 volt and ampere_hour meter circuit.

If no sneak circuit can be identified, the most likely cause of temp-

erature meter anomalies would be the four-wire splice in the temperature
meter circuits.

This anomaly is open.

14.6.2 Rear Steering Inoperative

On the initial drive to the modular equipment stowage assembly, the

crew reported that the rear steering was inoperative; however, upon leav-

ing that stop, both the front and rear steering systems were operational

and functioned normally for the remainder of the mission.

Analysis of troubleshooting procedures initiated by the crew and a

review of the switch- and circuit-breaker configuration timeline suggests
that no intermittent hardware malfunction existed. An intermittent con-

dition in the rear steering electrical system would explain the anomalous

operation, but this is very unlikely because the system exhibited normal

performance for the balance of the lunar activity.

Figure lh-78 shows that switch 10, circuit breaker 10, and circuit

breakers 3 or 4 must be closed to provide power to the rear steering sys-

tem. In addition, circuit breakers 3 or 4 must be closed to provide ±15
Vdc for the drive as well as steering control electronics. Since the ve-

hicle had both mobility and forward steering, at least one of these breakers

made contact. Switch l0 was cycled after vehicle motion; however, the rear

steering remained inoperative. Circuit breaker l0 could possibly have been

open due to some contaminate existing in the breaker.

Another possible cause of the anomalous condition is in the steering

servo system (fig. 14-79). A signal generated by the hand controller is

coupled to the input servo amplifier as an error signal across a bridge.

This signal is amplified and applied to the steering motor field coils in

a direction determined by the polarity of the input signal which depends

upon the direction of the hand controller deflection. The feedback po-

tentiometer is driven by the steering motor in a direction to balance the

bridge, thus cancelling the original error signal. A non-conductive lu-

bricant (DC h0), is applied to the wiper and resistive element of the po-

tentiometers to produce smooth operation and reduce noise. At low temper-

atures, this lubricant could become more viscous and insulate the wiper
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from the resistive element. No error signal would then be present at the
input to the servo amplifier, although the hand controller was deflected.
As the steering electronics heat up, the lubricant becomes less viscous.
Exercising the hand controller then cleans the lubricant from the wiper
and resistive element, allo_ing contact to be made. This would account
for the anomalous condition. Tests will be conducted to determine the

effect of the lubricant on the potentiometers at low temperatures.

This anomaly is open.
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14'.6.3 Navigation System Computed Parameters Not Updating

After leaving station 9 during the second extravehicular activity,
the crew reported that the computed parameters of bearing, distance, and
range were not being updated by the navigation system. The heading and
speed indicators, however, were operating normally. In reviewing the nav-
igation data reported at stations 8 and 9, the distance and bearing data
are incompatible with the time and direction of travel, respectively,
from station 8 to station 9. This indicates the navigation system also
failed to operate properly between stations 8 and 9. Again, the system
did not update the computed parameters between stations 9 and i0. At

o station i0, the navigation system logic and displays were reset to zero
and the system functioned normally during the third extravehicular activ-
ity.

The navigation system is functional with the bus B (battery i), bus
D (battery 2), and navigation circuit breakers closed. In thls configu-
ration, the gyro operates and the heading is displayed. In addition,
with the right rear motor-drive power switch to either bus B or bus D
position, the speed indicator will register. In order to compute and
display distance, bearing, and range data, and to update these data, at
least three of the four motor-drive power switches must be positioned to
an active bus.

At station 8, after the navigation readouts, the vehicle was moved
while attempting to determine the cause of the rear drive loss between
stations 6 and 8. Several switch configurations were attempted which
accounts for the subsequent incompatible navigation readouts at station
9. The readouts had the bearing and distance indicating a northeasterly
direction, although the crew reported that travel was in a northerly and
northwesterly direction. Also, during the traverse from stations 9 and
i0, the crew reported that the navigation system was not updating bear.
ing, range, and distance. This condition will occur with the loss of
power to two drive motors. From the battery and motor temperature data
in figure 14-80, battery 1 temperature shows an increase while the bat-
tery 2 temperature did not rise, indicating little or no load on battery
2. Also, the rear motor temperature shows an increase while the forward
motor remains constant. Thus, the navigation had no inputs from the for-
ward wheels and could not update.

At station 10, the digital displays and internal registers were reset
to zero and the circuit breakers and switches were returned to the nor-

mal configuration. The navigation system then performed normally through-
out the third extravehicular activity.

No corrective action is required.

This anomaly is closed.
f
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14.6.4 Scale Debonded from Pitch Attitude Indicator

During the second extravehicular activity, the crew reported that

the lunar roving vehicle pitch attitude indicator scale had fallen off.

The indicator provides a vehicle pitch reference between plus and minus

20 degrees. The loose pitch scale did not impact the mission because

the pointer for the indicator continued to work properly and the crew

could adequately estimate the vehicle pitch from the pointer position.

The pitch attitude indicator scale is bonded to a bracket (fig. 14-81)
which is attached to the indicator case. The scale is constructed of 2024T3
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aluminum and the bracket is 6/6 nylon. A comparison of the coefficients

of thermal expansion of the materials indicate approximately a 4-to-1

ratio for nylon-to-aluminum. With this expansion ratio, stress factors

of safety for am ideal bond are 3 and 4 at temperatures of minus 100 ° F

and plus 250 ° F, respectively. Although a review of the bonding proced-

ures did not reveal any problems, a flaw most probably existed in the
bond andthis allo_ed stress buildup which caused the scale to become

unbonded. The crew experienced no difficulty in estimating the pitch

angle after the scale became unbonded. The back of the meter case must

be machined off to gain access to the scale, and special handling permits
must be obtained before working on the meter because of the radioactive
materials within the case. For these reasons, no hardware changes will

be made for Apollo 17.

This anomaly is closed.

\
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Figure 14-81.- Pitch attitude indicator.
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15.0 CONCLUSIONS

The overall performance of the Apollo 16 mission was excellent with

all of the primary mission objective and most of the detailed objectives

being met, although the mission was terminated one day earlier than planned.

Experiment data were gathered during lunar orbit, from the lunar surface,

and during both the translunar and transearth coast phases for all de-

tailed objectives and experiments except subsatellite tracking for auto-

nomous navigation and the heat flow experiment. Especially significant

scientific findings of the mission were the first photography obtained

of the geocorona in the hydrogen (Lyman alpha) wavelength from outside

the earth's atmosphere and the discovery of two new auroral belts around
the earth.

Lunar dust and soil continues to cause problems with some equipment

although procedural measures have been taken and equipment changes and
additions have been made to control the condition.

Loss of the heat flow experiment emphasizes that all hardware should
be designed for loads accidentally induced by crew movements because of

vision and mobility constraints while wearing the pressurized suits.

The Capability of the S-band omidirectional antenna system to support

the overall lunar module mission operations was demonstrated after the
failure experienced with the S-band steerable antenna.

The performance of the Apollo 16 particles and fields subsatellite

showed that the lonar gravitational model was not sufficiently accurate

for the orbital conditions that existed to accurately predict the time of

impact.

The absence of cardiac arrhythmias on this mission are, in part, at-

tributed to a better physiological balance of electrolytes and body fluids
resulting from an augmented dietary intake of potassium and a better rest-

work cycle that effectively improved the crew's sleep.

The ability of the crew and the capabi&ity of the spacecraft to land

safely in the rous_ terrain of a lunar highlands region without having

high resolution photography prior to the mission was demonstrated. Fur-

ther, the capability of the lunar roving vehicle to operate under these

conditions and on slopes up to 20 ° was demonstrated.
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APPENDIX A - VEHICLE AND EQUIPMENT DESCRIPTION

This Appendix discusses the configuration changes to the spacecraft,

the extravehicular systems, and the scientific equipment since Apollo 15.

In addition, equipment flown for the first time in the Apollo Program is
described.

The Apollo 16 command and service module (CSM-113) was of the block

II configuration, but was modified to essentially the same configuration

as Apollo 15 to carry out a greater range of lunar orbital science activ-
ities than had been programmed on missions prior to Apollo 15. The lunar

module (LM-11) was modified, as was the Apollo 15 lunar module, to in-

crease the lunar surface stay time and return a larger scientific payload.

The launch escape system was unchanged. The potting material around the

pyrotechnic panel-separation devices in the spacecraft/launch vehicle

adapter was changed from an air-drying type to a catalyst-curing type to

prevent acetic acid, that is produced during the curing of the air-drying

material, from reacting with the lead sheath of the pyrotechnic device.

The Saturn V launch vehicle used for this mission was AS-511, and the sig-

nificant configuraiion changes for that vehicle are given in reference 2.

_ Many minor changes were made because of problems which occurred dur-

ing the Apollo 15 mission. These are briefly discussed in this section

of the report. The Apollo 15 mission report (reference 4) contains de-
tailed discussions of these modifications and should be used if the de-

tailed information is required.

A.I COMMAND AND SERVICE MODULES

The mass spectrometer and gamma ray spectrometer booms in the scien-
tific instrument module bay were modified to improve the extension and

retraction operations. Two proximity switches were added to the spectrom-

eter booms along with telemetry measurements to provide the crew and ground

personnel an improved indication of the boom position during the extension

and retraction cycles. The service module auxiliary battery was modified
in the same manner as the lunar module descent batteries. These changes

are discussed in paragraph A.2.

A large heater was installed in the removable eyepiece assembly used

with the scanning telescope. The heater prevents moisture condensation

and eyepiece fogging, which was experienced on Apollo 15.

The mode IA abort sequence was extended from 42 to 61 seconds to pre-

clude the possibility of a land landing with f_tll command module reaction

control system propellant tanks. The sequence timer which inhibits the

/
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firing of the pitch control motor in the launch escape system and the com-
mand module reaction control system propellant dump was changed from h2 to
61 seconds. In the event of a pad or early abort, the pitch control motor
will fire to provide a further downrange landing point and the reaction
control system propellant will dump through the command module blow-out
plugs to reduce impingement of propellant on the parachutes.

As a product of improvement, the parachute riser link material was
changed from _130 steel to Inconel 718. This eliminated the need for a

plating operation on the 4130 which could possibly cause a hydrogen em-
brittlement problem.

Undervoltage alarms and the loss of lighting for some controls and
displays during Apollo 15 were caused by a short circuit in the mission
timer. For Apollo 16, a fuse has been added in the numerics power line
to each timer; if a failure of this type should recur, the fuses will pre-
vent other systems from being affected.

A potential single-point failure was found during analysis of the
Apollo 15 mission data. As a result, two circuit breakers were added in
series with the command and service module/lunar module final separation
switches and a lanyard-operated actuating device Ms added to the circuit
breakers to enable the crew to actuate the circuit breakers while strapped
in their couches during launch.

Broken glass on the range/rate meter in the Apollo 15 lunar module
resulted in glass applications being reviewed in both vehicles. As a re-
sult, transparent Teflon shields were added to the flight director atti-
tude indicators, the service propulsion glmbal position and launch vehicle
propellant tank pressure indicator, the service propulsion oxidizer un-
balance indicator, the fuel oxidizer quantity indlcators, and the entry
monitor roll indicator.

The configuration of the docking ring separation system was modified
to insure slngle-cord cutting capability, thus insuring redundancy in the
separation system (fig. A-l). This modification eliminated free volume

between the explosive charge and docking ring, thus enhancing the energy
transfer from the explosive charge to the docking ring.

The plastic insert within the quick disconnect on the water gun, used
to attach the bacteria filter, was modified because of breakage during the
Apollo 15 mission. The plastic material was changed to steel.
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Figure A-I.- Modifications to docking ring separation system.
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A. 2 LUNAR MODULE

The lunar module batteries were modified to prevent the case-crack-

ing and low-capacity problems experienced with previous flight batteries.

These modifications included the installation of Teflon sheet separators

between the battery case and the end shells. Also, the limits of the vent

system were changed and the plate tabs were strengthened. Manufacturing

processes were altered and additional flight battery cells were fabricated

for use in ground tests to refine battery ampere-hour capacity predictions.

A manual descent battery coolant flow shutoff valve was installed to

provide control of the descent battery temperatures, thereby increasing

the battery capacity capabilities. The use of this coolant flow shutoff
valve was constrained because of temperature limitations on the two de-

scent electrical control assemblies which were on the same coolant loop.

Therefore, transducers were added for monitoring each electrical control

assembly to verify that the temperature limits were not exceeded.

The plastic insert in the quick disconnect between the water gun and

bacteria filter broke during the Apollo 15 mission when subjected of ex-

cessive torque. As a result_ the insert material was changed from plastic
to steel.

During Apollo 15, electromagnetic interference caused numerous abort

guidance system master alarms and warnings. The cause of these alarms
was traced to a buffer within the warning system which was not properly

grounded. A ground has been added for Apollo 16 and 17 to prevent volt-

age spikes from initiating an alarm.

The broken glass of the range/rate meter during the Apollo 15 mission

resulted in a glass doubler being placed on the meter and tape or shields

being placed over other indicators. The flight director attitude indica-

tors were taped and a glass shield was installed over the crosspointer
indicator.
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A.3 LUNAR SURFACE MOBILITY SYSTEMS

A.3.1 Extravehicular Mobility Unit

The extravehicular mobility unit was modified to improve its opera-

tional capability, safety, and to provide increased dust protection. Sig-

nificant changes were as follows:

a. A red stripe was added to the back of the Commander's oxygen

purge system to aid in personnel identification.

b. Beta cloth flaps were added on the top of each oxygen purge sys-

tem to cover those portions of the stowed antenna that were not covered

previously.

c. Dust protectors were added to the oxygen purge system gas connec--

tots and portable life support system water connectors.

d. Anti-peel patches were added to the gloves to protect the gusset

between the thumb and palm.

e. A secondary restraint was added to the knee convolute in case of
cable failure.

f. The insult drinking device soft valve seat was removed to in-
crease the flow rate.

g. The length of the water transport hoses between the portable life

support system and suit was increased 4 inches to improve donning charac-
teristics.

The cord within the retractable tethers, worn by the crew while on

the lunar surface, was changed from a 30- to 50-pound test cord. The term-

inating knots were changed to an improved clinch type which is normally
used with monofilament line. Also, the knots were dipped in cement to

prevent them from slipping or becoming untied.

A.3.2 Lunar Roving Vehicle

Minor changes were made to the lunar roving vehicle, these changes
were :

a. The internal circuitry of the ammeter was modified to register

from 0 to 50 amperes, but the meter face remained sealed from 0 to i00

amperes. The true value of the readout was one half that indicated on
the meter face.
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b. Velcro was added to the battery covers to provide increased pro-

tection against dust. Reflective tape was added to provide more radia-
tive cooling.

c. New underseat stowage bags with dust covers were provided.

d. The gnomon stowage bag strap was modified for more positive re-
tention.

e. Stiffened seat belts with over-center tightening mechanisms were

added, and stowage loops for the belts were attached to the low-gain an-
tenna and the camera staffs.

f. The auxiliary power circuit breaker was changed from 7.5 to l0

amperes. A switch was also added to bypass the circuit breaker and pre-
vent loss of power after lunar module ascent.

A.3.3 Extravehicular Communications

The lunar communications relay unit and associated hardware were mod-

ified for better operation and increased reliability. The changes were:

a. Redesigned elevation and azimuth clutches were incorporated to -
insure proper camera response to elevation and azimuth commands.

b. Optical sight earth image intensity was increased by a factor

of 3 by removing an aperture restriction and the associated baffling.

c. Fifteen square inches of mirror were added to the top of the

color television camera to allevi&te thermal problems. Also, the black
paint on the exposed upper surfaces of the television control unit was
changed to white for thermal considerations.

d. A higher torque elevation drive motor was incorporated to provide
increased margin for operation at higher temperatures.

e. Velcro strips added to lunar communications relay unit thermal

blanket to permit covering of lunar communications relay unit control

panel for additional post-extravehicular activity thermal protection (lu-
nar roving vehicle was left in different parking attitude than on Apollo 15).
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A.4 EXPERIMENT EQUIPMENT

A.4.1 Lunar Surface Science Equipment

Two lunar surface experiments, which have not been flown previously,

were added to the Apollo 16 complement. These include the cosmic ray de-

tector (sheets) e_eriment and the far ultraviolet camera/spectroscope
experiment. One new tool, the lunar surface sampler, was also flown for

the first time on Apollo 16. The remaining Apollo 16 lunar surface ex-

periments and tools have been flown previously and their descriptions
are found in references 4 and 9 through 13.1 Table A-1 lists the lunar

surface experiments and identifies the previous missions on which these
experiments were conducted.

In addition to the normal repackaging of the central station (fig. A-2)

to accomodate the specific experiments for Apollo 16, one minor change was
made. This change consisted of increasing the rear-curtain-retainer re-

lease-pin lanyard strength from 50-pound test material to 180-pound test

material to prevent the breakage problem experienced on the previous mis-
sion. Also, the lunar dust detector was removed from the central station.

Modifications were made to the heat flow experiment bore stems and

to the lunar surface drill to improve the penetration ability and resolve

problems that were experienced during Apollo 15. The bore stem tapered
Joints with diminished external flutes were changed to titanium threaded

Joints with the external flute depth maintained. The titanium Joints were

bonded to the boron-fiberglas bore-stem body. Bore stem lengths were also

changed so that one 54-inch long stem and two 28-inch long stems were used

for each hole instead of six 22-inch long stems. .The drill spindle was

modified to accept the bore stem threaded Joints. The spindle adapter as-
sembly previously used with the bore stem, was replaced with a reducer
for use with the (:ore stem. The core stem wrench was modified so that it

can also be used for separating both the bore and core stems. A core stem

extractor was also provided for use with the treadle (fig. A-3) to assist

the crew in removing the core stems from the lunar surface.

The active seismic experiment mortar box cable was lengthened from

l0 feet to 50 feet for greater separation distance from the central sta-

tion. Also, a subpallet was added for the mortar box (fig. A-2) to pro-
vide greater stability during firings and for ease of alignment when ini-

tially erecting the experiment. The thumper selector switch was modified

to provide a more positive detent and all openings around the thumper se-

lector knob and aa'ming and firing knob were covered with dust protectors.

1Although some changes have been made to the science hardware since

its initial confi_,raration, they are minor in nature and do not alter the

descriptions previously provided.
/
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TABLE A-I.- LUNAR SURFACE SCIENCE EXPERIMENTS

Experiment Experiment Previous Apollomissions on whichnumber
conducted

Apollo lunar surface experiment package:

(i) Fuel capsule for radioisotope 12, 14, 15
thermoelectric generator

(2) Suhpaekage i:

(a) Passive seismic experiment S-031 12, 14, 15
(b) Active seismic experiment S-033 14

(c) Lunar surface magnetometer S-034 12, 14, 15
experiment

(d) Central station for command con- 12, 14, 15
trol

(3) Subpackage 2:

(a) Heat flow experiment S-037 (a), 15
(b) Radioisotope thermoelectric 12, 14, 15

generator

Lunar field geology S-059 ll, 12, 14, 15 -

Far ultraviolet camera/spectroscope S-201
equipment

Solar wind composition experiment S-080 ll, 12, lh, 15

Lunar soil mechanics S-200 ll, 12, 14, 15

Portable magnetometer experiment S-198 14

Cosmic ray detector (sheets) experiment S-152

The operational measurement range of the lunar portable magnetometer

was increased from +100 gamma to +250 gsmlma. The motor-type gages used
to readout the measurements were changed to a solid-state digital readout.

Also, a ratchet was added to the cable reel to ease rewinding of the cable.

Cosmic Ray Detector (Sheets) Experiment.- The purpose of the cosmic

ray detector (sheets) experiment, shown in figure A-4, is to:

a. Measure the charge, mass, and energy spectrum of heavy cosmic ray

and solar wind particles in the energy ranges from 0.5 to i0 kiloelectron

volts/nucleon and from 0.2 to 200 million electron volts/nucleon.

b. Provide calibration data for glass detectors, including tektite

glass.
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Universal handling tools
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Figure A-2.- Apollo lunar surface experiments package.
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Figure A-3.- Core stem extractor.

c. Measure the thermal neutron flux at the lunar surface.

d. Assess the problem of Ar40 implantation.

The cosmic ray detector experiment consists of a four-panel foldable
detector array. This array, which is mounted on the outside of the lunar
module descent stage, is directly exposed to cosmic ray and solar wind par-
ticles from spacecraft/launch vehicle adapter separation through lunar
landing. During the initial phases of the first lunar surface extravehic-
ular activity, a hidden surface of the number 4 detector panel is uncovered
by a crewman, and this exposes the surface to the lunar surface cosmic ray
and solar wind environment.

Near the end of the last extravehicular activity, the detector panels
will be retrieved and stowed in a special bag, equipped with temperature
indicators, for return to earth. When the panels are folded, half of the
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Shade
completely raised

Figure A-h,- Fully deployed cosmic ray detector experiment.

f
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detector sheets are automatically shifted relative to the other half, al-

lowing the detection of particles which strike the panels during trans-

earth coast while the experiment is stowed within the conmnand module.

Photographs of the experiment on the lunar surface will be taken with the
70-ram electric data camera (60-ram lens).

The number 1 detector panel is composed of 31 sheets of Lexan plas-

tic, 0.025-centimeter thick, that are covered by perforated aluminized

Teflon. Two temperature indicators of the color-changing type are located

within the panel.

The number 2 detector panel is similar to the number 1 panel with the

exception that it has within its two samples, a pre-irradiated plastic for

postflight data analysis purposes.

The number 3 detector panel is composed of a stack of 40 0.20-centi-
meter-thick Kodacel cellulose triacetate sheets, with a stack of ten, 5-

micron-thick, Lexan plastic sheets bonded to the upper half of the panel.

Five glass specimens of various sizes and shapes are placed within the

lower portion of the panel.

The number 4 panel, the most complex panel of all, contains a variety

of particle-detecting materials. The main detector sheets are Lexan and

cellulose triacetate, laminated as previously described. The plastic _

sheets composing the lower portion of the panel require shifting, but

those of the upper portion of the panel do not. The lowest quarter of

the panel is covered with a 0.076-centimeter-thick piece of aluminum to

which small pieces of mica, glass, and various naturally occurring crys-

tals are attached. The next highest quarter of the panel is covered with

2-micron-thick foil bonded to the adjacent plastic sheet. The number 4

panel also contains two temperature indicators. The upper half of the

number 4 panel is covered with 5-micron-thick aluminum foil bonded to a

base of platinum. The action of a crewman pulling a lanyard moves this

assembly inside the panel to expose another piece of aluminum foil bonded

to the adjacent plastic sheet.

Far Ultraviolet Camera/Spectroscope Experiment.- The purpose of the
far ultraviolet camera/spectroscope experiment (fig. A-5) is to provide

photographic imagery and spectroscopic data on celestial objects in the
far ultraviolet region (principally at the Lyman-alpha wavelength). This

experiment constitutes the first planetary-based precursor astronomy lab-

oratory. Far ultraviolet spectroscopic data are obtained in the wave-

length range from 500 to 1550 angstroms with a resolution of 30 angstroms.

Imagery data are obtained in the wavelength ranges from 1050 to 1260 ang-
stroms and from 1200 to 1500 angstroms. Difference techniques are per-

formed on these imagery data to identify characteristic Lyman-alpha ra-

diation at 1216 angstroms, which will identify hydrogen gas clouds. Spe-
cial targets of interest included the geocorona, earth's atmosphere, solar
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lunar

Figure A-5.- Far ultraviolet camera deployed on lunar surface.
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wind, various nebulae, star clouds (Milky Way), galaxy clusters and other

galactic objects, intergalactic hydrogen , the solar bow cloud, lunar atmos-
phere, and lunar volcanic gases.

The equipment for the far ultraviolet camera/spectroscope experiment

consists of a 3-inch electronographic camera with a Cesium iodide (Csl)

cathode and film transport device (containing B5-mm film). While operat-
ing, it is tripod mounted in the lunar module shadow. Lithium fluoride

(LiF) and Calcium fluoride (CaF2) filters are used to obtain the imagery
difference necessary to identify hydrogen Lyman-alpha radiation at the

1216 angstroms wavelength. No filters are used to obtain the required
spectroscopic data.

The crew deploys the tripod-mounted camera in the lunar module shadow

and adjusts the camera to the specified level and alignment tolerances,

pointing the camera at the required targets by means of the elevation and

azimuth adjustments, and activates the automatic exposure sequencer. At

the end of the last extravehicular activity, the crew removes the film

transport device from the camera, places it in a special stowage bag, and
returns it to the lunar module ascent stage for subsequent return to earth.

Orientation photographs of the deployed camera assembly are taken by the
crew with the 70-mm electric data camera (60-mm lens).

Lunar Surface Sampler Tool.- The lunar surface sampler tool is used --

to collect undisturbed lunar soil samples (fig. A-6). The sampler con-

sists of two major subassemblies; a 100-square-centimeter surface sampler

plate and a container assembly. Two of these units are used on Apollo 16 -

one having Beta cloth covering the sampler plate, and the other having
deep-pile nylon velvet over the sampler plate. The Beta-cloth covered

sampler plate is used to pick up an undisturbed surface layer about 0.5-

millimeter thick and the nylon-velvet covered plate is used to pick up
an undisturbed surface layer about 1-millimeter thick.

The universal hand tool is used in conjunction with the sampler for

ease of placing the smapler on the surface. The samplers are stowed on

the lunar roving vehicle pallet.

A.4.2 Inflight Science Experiments

The inflight science equipment within the command and service modules

for the Apollo 16 mission is the same as that flown on Apollo 15 (refer-

ence 4). Table A-II shows on which missions the equipment were flown

and in which reports the experiment is described; therefore, no overall

descriptions will be presented in this report. However, as a result of

a problem with the panoramic camera during the Apollo 15 mission, a modi-

fication was made to the camera control circuitry. A switch was provided

to manually override the automatic operation of the velocity/altitude

sensor, should sensor operation become erratic.
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Figure A-6.- Lunar surface sampler tool.
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TABLE A-II.- LUNAR INFLIGHT SCIENCE EXPERIMENTS

Previous Apollo

Experiment Experiment Missions on which
Number conducted or

Deployed

Gamma-ray spectrometer S-160 15

X-ray fluorescence S-161 15

S-band transponder (subsatellite) S-164 15

Particle shadows/boundary layer S-173 15

Subsatellite magnetometer S-174 15

S-band transponder (CSM-LM) S-164 14, 15

Alpha particle spectrometer S-162 15

Mass spectrometer S-165 15

UV photography - earth and moon S-177 15

Gegenschein from lunar orbit S-178 14, 15

Bistatic Radar S-170 14, 15 4

Also, as a result of problems during Apollo 15, minor changes were made

to the mapping camera deployment mechanism and to the laser altimeter.

The deployment mechanism of the mapping camera operated sluggishly, so

the lubrication was changed from a molybdenum disulfide dry film lubricant

to a vacuum compatible oil and grease mixture. In the laser altimeter,

compensation circuitry was added in the high voltage power supply to auto-

matically increase the voltage to the laser module should the power output

become degraded. Also, the bearing seals in the Q-switch motor were mod-

ified to prevent contamination of the optical surfaces within the laser

module. Two resistors and a relay that were included for ground safety,

were removed to prevent possible corona problems.

A.4.3 Photographic Tasks and Equipment

The photographic tasks for the Apollo 16 mission are divided between

cameras located in the service module, command module, lunar module, and
on the lunar surface.
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Service module photographic tasks.- The photographic tasks for the

cameras operated in the service module are as follows:

a. Obtain high-resolution panoramic photographs of the lunar surface

using stereoscopic and monoscopic techniques.

b. Obtain stellar photographs and high-quality lunar surface metric

photographs with simultaneous exposures.

c. Obtain data on the altitude of the command and service modules

above the lunar surface.

Command modiLle photo6raphic tasks.- The photographic tasks for the

cameras operated in the command module are as follows :

a. Obtain photographs of diffuse galactic light of selected celes-

tial subjects.

b. Obtain photographs of solar corona after spacecraft sunset and

prior to spacecraft sunrise.

c. Obtain photographs of a comet, if appropriate trajectory and
celestial conditions exist.

d. Obtain photographs of zodiacal light as the spacecraft approaches
sunrise.

e. Obtain photographs of lunar surface areas of prime scientific
interest.

Lunar surface and lunar module photographic tasks.- The photographic
tasks for the c_neras operated on the lunar surface are as follows :

a. Obtain documentary metric and stereo photographs of each emplaced

lunar surface ex_?eriment, showing the relationship to other experiments.

Also, document s_L1 experiment operations while on the lunar surface.

b. Obtain documentary metric and stereo photographs of collected sam-

ples and their initial relationship to the s_rrounding area. Also, docu-

ment all geological investigations.

c. Obtain 360-degree panoramic photographs of the landing site area.

d. Obtain :motion picture photography as the lunar roving vehicle

moves during the three traverses.

e. Obtain lunar module descent and ascent sequence photography and

lunar module and service module inspection photography.

/"
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Photo_raphlc equipment.- The majority of the experiments and detailed
objectives associated with lunar orbital and lunar surface operations re-
quire photographic data for evaluation or validation. The photographic
equipment required with these operations has been described in conjunction
with the applicable experiments in previous sections or previous mission
reports. However, for convenience, a complete listing of the equipment
and film is provided in table A-III.

A problem with the 70-mm camera while operating on the lunar surface
necessitated minor modifications to the camera mechanism. Two surface
flats were ground on the motor shafts for more positive retention of the
drive pinion set screws.

A. 5 MEDICAL EXPERIMENTS

Two medical experiments are being flown for the first time on Apollo
16. They are the biostack experiment (M-211), and microbial response in
space environment experiment (M-191).

A.5.1 Biostack Experiment (M-211)

The biostack experiment (fig. A-7) is designed to obtain information
on the biological effects of high-atomic high-energy ions or particles of
the cosmic radiation environment on selected biological systems. The high-
atomic (number) high-energy particles are not yet obtainable from earth-
based radiation sources. Therefore, information pertaining to the bio-
logical effects of these particles can only be obtained from experiments
conducted in space. Such information is required to determine the nature
and extent of this type radiation hazards to future manned space missions.

The biostack experiment hardware consists of four types of biologi-
cal systems interlayed with nuclear radiation detectors and encased in a
hermetically sealed aluminum cylinder.

The biological materials selected for this experiment are Bacillus
Subtilis spores (hay bacillus), Arabidopsis thaliana see_s (mouse-ear
crest), Vicia Faba (broad bean roots), and Artemia Salina eggs (brine
shrimp). The materials are prepared and embedded in monolayers in water-
soluble foils of polyvenyl alcohol. These are Interlayed between cosmic
ion tract detectors, i.e., nuclear emulsions (Ilford K2 and K5) and plas-
tic (cellulose nitrate and polycarbonate). The plastic detectors, which
have different energy thresholds, facilitate determination of the charge
and energy characteristics of the high-atomic high-energy particles. The
techniques developed for assembly and processing permit accurate correla-
tion of incident high-atomic, high-energy particles with individual bio-
logical objects.
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TABLE A-III.- PHOTOGRAPHIC EQUIPMENT

Experiment or objective Camera type a Lens Film typeb

Experiments

In flight :

Gar_ ray spectrometer PC 24-inch LBW (3414)

X-ray fluorescence MC 3--inch BW (3400)

Alpha particle spectrometer BW (3401)
S-band transponder

Mass spectrometer

Subsatellite (launch) DAC 75-mm CEX (S0-368)

Mass spectros_ter DAC 18._m BW (S0-164)

Ultraviolet photography _ I05-_ Vla-0, CEX
UV transmitting (S0-368)

LUnS.T surface:

Lunar geolo_' HEDC 60_mm BW (3401)
H_C 60-ram HCEX

LDAC 10-ms CEX

HEDC 500-ram T_

Apollo lunar surface H_nO 60-ram HCEX (80-168)

Experiments package LDAC 10-ms CEX (80-368)

Far UV comers/spectroscope LSUV Eleotrono- NTB-3

graphic
Schm!dt

nO 60-_m HOEX (S0-168)
Solar wind composition }mDC 60-ms NCEX (S0-168)

_w (3401)
Soil mechanics HEDC 60-mmm BW (3401)

LDAC 10-mm CEX (80-168)
Portable magnetometer H_C 60-ms NCEX (80-168)

Cosmic ray detector _C 60-mm HCEX (80-168)

(sheets) BW (3401)

Detailed objectives

In flight :

Service module orbital PC 2_-inch LBW (3414)

Photographic tasks MC 3-inch BW (3400)

SC 3-inch BW (3401)

Cc_mand module 35 55-ms VHBW (2_85)

Photographic tasks HEC 80-mm VHBW (2485)

HEC 250-_ CEX (80-368)

VH_W(2485)
DAC 18..-== "4Y,BW (2_5)

aCame ra no_ncl &ttt_e:

DAC 16-ms data a_%uisition camera

LDAC 16-ms lunar surface data anqulsition camera (battery operated)
}CO TC)-mm electric camera

_C 70-_ electric data omnera (with reseau)
35 3_';=,nacamera

MC 3-,inch mapping camera
SC 3-.inch stellar camera

PC 2_-inch panoramic camera

LSUV Electrouographie camera

bFilm nomenclature:

CEX Color exterior (80-368)

HCEX Hlgh speed color exterior (80-168)

BW Mediums speed black dud white (3400. 3401. end SP-16_)

LBW Low speed black and white (341_)

VHBW Very high speed black and white (2h85)

IIa-0 Ul_raviolet (UV) spactroscopin

NTB-3 Far UV spectroscopic

/
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Figure A-7.- Biostack experiment hardware.

The experiment is stowed in the command module, is completely pas-

sive, and requires no life support or crew participation.

A.5.2 Microbial Response in Space Environment Experiment (M-191)

The microbial response in space environment experiment (fig. A-8) is

designed to quantitatively measure the effects of certain space flight en-

vironmental parameters on nine different microbial systems and to evalu-
ate the consequence of genetic and responsive alteration in these test

systems. To obtain data of medical importance, model test systems were

selected which demonstrated disease-associated phenomena, but were not

pathogenic to man. By separating the test systems into 8_0 individual

compartments, each Containing an average of ten thousand microorganisms,
selective evaluations of the alterations influenced by space vacuum,
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Figure A-8.- Microbial response in space environment experiment hardware.
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changes in oxygen partial pressure, lowered gravity states, and cosmic

radiation, as well as the total space flight environment are made possible.

The unusually fine sensitivity, made possible by the large sample sizes,
is further increased by manipulation of the mutation rate. This is made

possible through the use of selected components of the solar ultraviolet

spectrum, controlled by a series of optical filters. The flight hardware

consists of a microbial ecology evaluation device which is exposed to so-
lar radiation and space vacuum during the transearth coast extravehicular

activity. In addition to the microbial test systems, this hardware con-

tains two types of ultraviolet measuring systems, a compound high energy-
multicharged article dosimeter package, and recording thermometers. These

systems provide the measurement data required for interpretation of the
biological results.

A.6 MASS PROPERTIES

Mass properties for the Apollo 16 mission are summarized in table A-IV.

These data represent the conditions as determined from postflight analyses
of expendable loadings and usage during the flight. Variations in command

and service modules and lunar module mass properties are determined for each

significant mission phase from lift-off through landing. Expendables usage

are based on reported real-time and postflight data as presented in other _
sections of this report. The weights and center-of-gravity of the individ-

ual modules (command, service, ascent stage, and descent stage) were meas-

ured prior to flight and inertia values calculated. All changes incorpora-

ted after the actual weighing were monitored, and the mass properties were
updated.
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TABLE A-IV.- MASS PROPERTIES

Weight, Center of gravity, in. Moment of inertia, slug-ft2 Productslug-ft2°finertia,

18  Iylz fizz lixziy
Comm_ud and service module/lunar module

Lift-off ll6 393 8h3.4 3.0 2.5 73 561 1 2_0 951 1 2hl 2h2 37hl i0 697 2617

Earth orbit insertion i07 226 804,5 3.3 2.6 72 679 767 814 768 leh 6559 ii 528 2606

Transposition and docking:
Command & service modules 66 923 933.8 5.0 4,7 36 _0 80 316 81 9h0 -2095 329 2260
Lunar module 36 252 1238.2 -0.Y 0.8 25 898 26 177 27 117 -519 203 -h32

Total docked 103 175 1040.8 3.0 3.3 62 580 576 73_ 579 385 -ii 409 -ShS& 193h

Lunar orbit insertion 102 652 1041.3 3.0 3,h 62 llh 575 152 577 930 i-ii 220 i -5728 2066

Descent orbit insertion 77 595 1081.2 2.1 1.9 h9 096 450 3h9 h57 001 -9172 -1127 -936

Separation 76 590 I083,9 2.1 1.9 49 925 hh6 00h h52 325 -8624 -1392 -i012

Command and service module 39 895 942.6 _.3 3.2 22 210 60 398 65 668 -2h69 lh16 -504
clreularizatIon

Cc_mand and service modude 38 994 9h2.9 4.3 3,1 21 881 60 271 65 383 -2h77 i_38 -581

plane change

Docking:
Command & service modules 38 452 943,2 4.2 3.1 21 590 60 203 65 079 -2h57 i_35 -501

Ascent sta_e 5866 1165.6 4.5 -2.5 3298 2312 2677 -113 -8 -377

Totsl after docking:
Ascent stage manned hh 318 972.7 h.2 2.h 2_ 923 i16 885 122 091 -2h96 4h -880
Ascent stage _nmanned 4_ 298 970.7 h.l 2,h 2h 839 112 588 117 80_ -2825 258 -_4

After _scent stage Jetti.=on 38 992 9h_.0 4.3 2.9 21 698 60 225 65 073 -2337 126h -527

8ubsatelllte Jettison 38 830 9_h.3 h.2 3.1 21 581 59 974 6h 861 -2257 1153 -479

Transearth injection 38 697 9_4.3 4.2 3.1 21 463 59 886 6& 793 -2258 1159 -446

Transearth extravehicular 27 h90 968.2 1,4 3,8 15 826 47 705 47 245 -898 864 -1125
activity

Command and service modules 27 225 968.8 1.3 h.0 15 523 47 253 h6 846 -823 860 -1024

prior to separ&tion

After separation:
Service module lh 199 905.h 2.4 2.2 9536 15 336 15 488 -h27 520 -987
C_mmand module 13 026 i089.1 0.i 5.9 5958 5308 4762 55 -388 -2h

Entry 13 015 i039.1 0.1 5.9 5952 5301 h761 5h -386 -23

Main parachute deployment 12 hh2 1037.5 0.i 6.0 57&6 4900 h401 56 -334 -21

Lauding ll 995 1035.6 0.I 6.0 5680 4607 4090 52 -339 -20

Lunar module

Lunar module at earth launch 36 255 18_.1 0.4 -i.0 25 903 27 362 26 lh7 85 5_7 188

Separation 36 743 185.1 0.4 -0.5 27 348 28 894 27 243 84 834 180

Powered descent initiation 36 617 184.9 0.5 -0.5 27 280 28 29_ 26 927 184 830 166

LUnar landing 18 208 208.6 0.8 _.8 15 709 16 580 17 894 128 877 178

Lunar lift-off l0 949 243.7 0.h 2,T 6762 3390 5976 95 178 -35

Orbit insertion 6001 256.6 0.7 5.0 3365 2896 2114 84 95 -37

8Termlnal phase initiation 5972 256_4 0.6 5.0 3353 2888 2097 80 96 -36

Dockin6 5866 256.2 O.1 8.i 3298 2866 2030 64 99 -30

Jettison 5306 255.1 0.0 3.1 3142 2762 1975 75 79 -30

aPost ullage
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APPENDIX B - SPACECRAFT HISTORIES

The history of command and service module (CSM-II3) operations at

the manufacturer's facility, Downey, California, is shown in figure B-I,

and the operations at Kennedy Space Center, Florida in figure B-2.

The history of the lunar module (LM-II) at the manufacturer's facil-

ity, Bethpage, Ne]¢ York, is shown in figure B-3, and the operations at

Kennedy Space Center, Florida, in figure B-4.



1970 1971

_ugustIse_be.Io_ I Nevem_I oecom_Janua_I Fe_.a_I M_.ohI A.i, I MayI JuneI Ju,y
_ fudividual and combined systems checkout

_Retest and individual tests

m lntegrated systems test

I Domate

Pressure vessel and reaction control system checkout m

Top deck inspection - interior closeout

Top deck buildup I

Commandmodule Weight and balance I

Special tests - docking probecheckout

Preshipment inspection •

Ship

Service propulsion system functional test

Cryogenic shelf rework

Thermal paint application -scientific instrument module installation_Service module

Weight and balance I

Ship I

Figure ]3-1.- Checkout flow for command and service module lib at contractor's facility.



1971 I 1972Julyj,ugustiSe_em_rIOcto_iNovemberiOec_rJanuaryIFebroaryi_arohi ,pr,,
_Receiving inspection, equipment installation and checkout

iCommand and service module/lunar module docking test

B ! iAItitude chambertests

: 'i Scientific instrument module experiments bay installation and
validation tests

iCSM/SLA mate

iSpacecraft/launch vehicle assembly

ISpace vehicle moved to launch complex

i lntegrated systems test (first run)

Space vehicle moved to vehicle assembly building I

Command module reaction control system propellant tanks replaced and docking ring_
modified

Space vehicle moved back to launch complexi

Integrated systems test (second run) and flight readiness test_

Spacecraft propulsion leak checks and propellant loadingi i

Countdown demonstration test i

Countdown•

Note: Commandand service modules delivered to Launch •
Kennedy Space Center on July 28, 1971.

I
Lx)

Figure B-2.- Command and service module 113 checkout history at Kennedy Space Center.



t_
I

1970 1971

MayI JuoeI J°'YIAugostIse°temberlOctober FebruaryIMarohI A0ri,I May
_Manufacturing, combined systems test of ascent stage and cold flow I

Retest, manufacturing, cold flow II, and preparationfor_final engineeringandevaluation acceptancetest

Final engineeringandevaluation acceptancetest_

Crewcompartmentfit andfunction checksBB

Preparationsfor shipmentand ship_

Figure B-3.- Checkout flo_ for lunar module ii at contractor's facility.

) 1



1971 i i972May I June I July I August I September I October [ November I December January I February I March I April

• _Equipment installation and checkout

m m Altitude chamber runs

IExperiment equipment fit and functional checks

RLunar roving vehicle fit and deployment checks

IFlight lunar roving vehicle installation

ILanding gear ins_aJlaLion

I Lunarmodule/adapter mate

mComhined systems test

Combined systems retest, mission simulation and {light readiness test I I I

Spacecraft propulsion leak checks and propellant, loading• I

Countdown demonstration test•

Countdown I

Note: Descent stage delivered to Kennedy Space Center on Launch'S'May 6, 1971; ascent stage delivered on May 14,1971.

Figure B-_.- Lunar module ii checkout history at Kennedy Space Center.
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.APPENDIX C - POSTFLIGHT TESTING

Postflight testing and inspection of the command module and crew

equipment for evaluation of the inflight performance and investigation

of the flight irregularities were conducted at the contractor's and ven-

dor's facilities and at the Manned Spacecraft Center in accordance with

approved Apollo Spacecraft Hardware Utilization Requests (ASHUR's), The

tests performed as a result of inflight problems are described in table
C-I and discussed in the appropriate systems performance section of this

report, Tests being conducted for other purposes in accordance with
other ASHUR's and the basic contract are not included,

S
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TABLE C-I.- POSTFLIGHT TESTING SUMMARY l

5D

ASHUR no. Purpose Tests performed Results

Guidance and Navigation

113007 Investigate cause of false gimbal lock. Perform resistance, power and coolant-on, Contact bounce in the thrust vector con-

and bench tests trol enable relay caused the anomaly.

113007 Determine cause of 8 occurrences of in- Perform resistance, power and coolant-on, See see. 14.1.4.
ertial coupling data unit failure indi- and bench tests.
cations.

113017 Investigate cause for secondary yaw aetu- Perform analysis, inspection, and electri- See sec. 14.i.i0.

ator serve assembly oscillations, cal checks.

113007 Investigate cause of _meven drive rates Perform analysis, inspection, and opera- See sec. 14.i.ih.
of scanning telescope shaft axis tlonal checks.

Electrical, Batteries, and Cryogenics

113021 Determine cause of erratic digital event Conduct spacecraft test, disassemble, and Paint particle caused intermittent contact.

timer behavior, inspect.

113019 Investigate cause for high battery mani- Pressure check manifold, and conduct mis- Manifold was tight and batteries functioned

fold pressure, sion profile on batteries and charger, normally.

113023 Investigate cause for hydrogen tank 3 Conduct analysis and review records. See see. 14.1.5.
heat leak to be excessive.

Communications

113024 Investigate loss of spacecraft up-link Integrity verification, and perform system See sec. 14.1.6.

command capability, and bench testing.

1130h2 Determine why the high-gain antenna Perform analysis, systems verification, and See sec. lh.l.16

would not acquire, bench testing.

Crew Equipment

113006 Investigate gas/water separator leskage. Perform inspection and analysls. See sec. 14.3.3

113020 Determine cause of monitor loss on color Perform thermal and vibration testing. See sec. 14.3.1
television.

113032 Investigate cause for poor fit of Luuar Perform analysis. Fit was satisfactory after garment was

Module Pilot's pressure garment assembly, pressurized.

1130_5 Investigate weak signal from Lunar Mod- Perform analysis and component testing. Microphone boom tips were loose.
ule Pilot's headset.

Propulsion

113508 Determine leakage and contamination in Disassemble regulators, inspect for dam- Regulators were normal. See sec. 14.1.21

in support of lunar module problem, age and contamination.

113511 Determine cause for forward heat shield Perform visual examination. Apparent leakage was normal.

thruster leakage.



TABLE C-I.- POSTFLIGHT TESTING SUMMARY (Concluded)

J

ASHUR no. Purpose Tests performed Results

Structures

113509 Determine why mass spectrometer and gamma Examine flight data and perform analysis. See sac. 14.1.8 and 14.1.9.

r_y booms failed to retract.

113510 Determine source of fibers found in com- Examine and analyze fibers. Source and quantity of fibers were
mand module, normal.

113034 Determine why Y-Y strut was difficult Inspect strut clearances and evaluate Improper adjustment of set screw de-
to extend, ease of operation, formed strut barrel.

Environmental Control

ll301h Investigate water/glycol mixing valve Perform operational tests and analysis to See sec. 14.1.1.
fluctuations, isolate cause.

ll3011 Determine cause of chlorine injector Inspect and perform pressure and leak tes,ts Sixty percent had loose base plates

leakage, on returned ampules, excessive bonding, and one leaked.

113015 Determine why lithium hydroxide canister Inspect and perform analysis. Canister swells due to water accumula-
was difficult to remove, tion during solo operation.

ll3010 Determine cause of cabin fan moaning. Inspect aud activate cabin fans. No damage. See sac. 14.1.11.

113012 Investigate apparent vacuum cleaner Inspect, operate, and analyze. Excessive dust deposits caused impeller
failure. Jamming on restart.

113013 Determine why suit loop pressure was Perform recalibration, disassembly, and Three pieces of lunar soll got inside the

not higher than expected, analysis of suit pressure transducer, sense cavity and affected the variable re-
luctance element.

113512 Locate source of water/glycol spill Inspect and perform pressure and leak Suit heat exchanger bypass valve stem seal
found on cabin floor, tests, leaked.

C_
!
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APPENDIX D - DATA AVAILABILITY

Tables D-I and D-II are summaries of the data made available for sys-

tems performance m_alyses and anomaly investigations. Table D-I lists the

data for the command and service module, and table D-II, the lunar module.

The following table contains the times that experimental data were made
available to the principal investigator for scientific analyses.

Time, hr :min Time, hr :min

From To From To

70:0,3 93:30 169:03 172:16

105:013 113 :35 174:15 175:16

113:54 i15:32 176:57 19h:02

i15:5,3 150:34 195:13 218:38

152:32 168:23 219:35 261:10

For addition_1 information regarding data availability, the status

listing of all mission data in the Central Metric Data File, building 12,
should be consulted.

/
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TABLE D-I.- COMMAND AND SERVICE MODULE DATA AVAILABILITY

Time, hr:min Data Bandpass 0scillo- Special
Source plots Bilevels Computer Brush Special

From To (a) or tabs word tabs graph plotsrecords records programsor tabs

-0h:00 00:30 ALDS X X

00:00 00:08 MIL X X X X X X
00:0h 00:14 BDA X X X X

00:05 03:30 STDN X X X

01:58 01:56 GDS X X X

02:30 02:h0 GDS X X X X X X
02:50 05:50 GDS X X X X

08:30 11:30 STDN X X X

12:00 13:00 GDS X X
23:00 2h:00 MAD X X

27:00 80:00 STDN X

29:39 31:38 GDS X X X X
37:00 39:00 STDN X X X

37:30 38:31 GDS X X X X X

51:30 52:58 MAD X X X
52:00 43:00 STDN X X X

52:56 46:58 MAD X X X
58:04 59:00 GDS X X

60:00 70:00 STDN X

69:38 73:05 STDN X X X

69:50 70:00 MAD X X X

73:05 76:15 STDN x X X

73:18 75:19 MAD X X X X X
74:22 74:36 GDS X X X X X X

75:57 76:18 GDS X X

76:00 81:00 STDN X X X

76:17 77:01 GDS X X X

78:00 79:11 GDS X X X X X X __

80:03 80:07 GDS X

80:16 85:52 STDN X X X

80:19 81:02 GDS X X X

81:03 82:12 _DS X

82:29 83:08 GDS X X X
82:44 85:03 GDS X

84:00 89:00 STDN X X X

84:24 85:03 GDS X

85:08 85:56 GDS X X
86:17 86:56 GDS X

86:18 89:38 HSK X

89:27 92:46 STDN X X X

90:06 9o:55 MAD X X

90:40 91:40 MAD X

91:35 92:26 MAD" X X
92:28 93:30 MAD X X X

92:46 96:43 STDN X X X

94:25 96:11 MAD X

96:11 96:16 MAD X X X X X X

96:15 97:00 MAD X X
97:31 97:41 MAD X X X X

98:11 100:54 STDN X X X X X
98:30 101:13 GDS X X X

I00:38 i04:58 STDN X X X

101:57 102:47 GDS X X

103:14 103:27 GDS X X X X X

103:19 108:53 STDN X X X

105:13 106:28 GDS X X X
107:05 108:50 GDS X

i08:53 i19:46 STDN X X X

110:45 111:38 HSK X

111:58 i15:32 ESK X

112:56 116:51 STDN X X X
116:07 119:43 MAD X

116:51 120:48 STDN X X X

120:06 121:35 MAD X

120:48 124:_9 STDN X X X





TABLE D-I.- COMMAND AND SERVICE MODULE DATA AVAILABILITY (Concluded)

Time, hr:min Data Bandpass Oscillo- Special

Source plots Bilevels Computer graph Brush plots Special
From To (a) or tabs word tabs records programsrecords or tabs

218:10 220:10 STDN X X X

220:36 222:38 MAD X

221:50 224:32 STDN X X X
222:34 226:30 SDS X

225:45 229:h8 STDN X X X
226:28 i 227:29 GDS X

227:30 227:35 GDS X

235:13 235:15 HSK X
239:06 2hi:08 MAD X X X X
2h2:06 243:08 MAD X

2_2:14 245:5h STDN X X X

243:06 246:08 MAD X

248:31 256:07 GDS X

248:40 251:25 STDN X X X

256:18 260:12 HSK X

259:27 265:49 STDN X X X

260:10 265:30 HSK X X X X X X
265:22 265:52 DSE X X X X X



D-5
f

TABLE D-II.- LUNAR MODULE DATA AVAILABILITY

Time, hr :mln Dat6, Bandpass C_put er Oscillo- Special Special
Source plots Bilevels graph Brush plots

From To (a) or tabs word tabs programsrecords records or tabs

-04:00 00:00 .a.LDS X X

34:02 34:07 GDS X x

53:30 53:45 STDN X X

93:17 96:43 STDN X X X

94:20 95:13 MAD X X X X X

95:12 95:29 MAD X X X
96:16 96:58 MAD X X X X X X

96:43 100:37 STDH X X X

96:44 96:54 MAD X X

96:57 99:15 MAD X X X X

99:08 101:02 MAD X X X

100:05 104:30 GDS X X
100:38 104:58 ST_ X X X

101:02 1103:06 GDS X X

i03:19 108:53 STDN X X X

103:50 104:31 GDS X X X X X X
104:28 I05:27 GDS X X X X

108:53 i16:51 ST_ X X X

116:08 118:07 MAD X X X

116:51 120:48 STDN X X
124:49 152:29 STDN X X

152:32 155:30 GDS X X

153:16 169:03 STDN X X

165:00 166:24 MAD X X

165:43 165:52 HSK X X X
166:22 168:00 MAD X X

168:17 172:15 STDN X X X

171:07 172:23 MAD X X X
173:02 176:12 STDN X X X

174:00 176:14 GDS X X X X X X

176:32 181:03 8TDN X X X

176:57 177:49 GDS X X X X X X

192:48 196:47 STDN X X

194:43 195:15 MAD X X X X X

195:00 195:58 MAD X X X
210:32 210:55 HSK X X X

aData souroes :

STDN - Spacecraft Tracking and Data Network

STDN station call letters and location:

BDA - Bermuda Islands
GDS - Goldstone (California)

HSK - Honeysuckle (Canberra, Australia)

MAD - Madrid (Spain)
MIL - Merrit Isl_ad (Florida) - launch area

0ther:

ALDS - Apollo la_seh data system (Kennedy Space Center, Florida)

DSE - Spacecraft data storage equipment

!-
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APPENDIX E - MISSION REPORT SUPPLEMENTS

Table E-I contains a listing of all reports that supplement the

Apollo 7 through Apollo 16 mission reports. The table indicates the

present status of each report not yet completed and the publication date
of those which have been published.



TABLE E-I.- MISSION REPORT SUPPLEMENTS

Supplement Title Publication
number date/status

Apollo 7

1 Trajectory Reconstruction and Analysis May 1969
2 Communication System Performance June 1969
3 Guidance, Navigation, and Control System November 1969

Performance Analysis
h Reaction Control System Performance August 1969
5 Cancelled

6 Entry Postflight Analysis December 1969

Apollo 8

1 Trajectory Reconstruction and Analysis December 1969
2 Guidance, Navigation, and Control System November 1969

Performance and Analysis
3 Performance of Command and Service Module March 1970

Reaction Control System
Service Propulsion System Final Flight September 1970
Evaluation

.5 Cancelled

6 Analysis of Apollo 8 Photography and December 1969
Visual Observations

7 Entry Postfllght Analysis December 1969

Apollo 9

1 Trajectory Reconstruction and Analysis November 1969
2 Command and Service Module Guidance, Navi- November 1969

gation, and Control System Performance
3 Lunar Module Abort Guidance System Perform- November 1969

ance Analysis

4 Performance of Command and Service Module April 1970
Reaction Control System

5 Service Propulsion System Final Flight December 1969
Evaluation

6 Performance of Lunar Module Reaction August 1970
Control System

7 Ascent Propulsion System Final Flight December 1970
Evaluation

8 Descent Propulsion System Final Flight December 1970
Evaluation

9 Cancelled
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TABLE E-I.- MISSION REPORT SUPPLEMENTS (Continued)

Supplement Title Publication
number date/status

i0 Stroking Test Analysis December 1969
ii Communications System Performance December 1969
12 Entry Postflight Analysis December 1969

Apollo l0

1 Trajectory Reconstruction and Analysis Mar_h 1970
2 Guldsnce, Navigation, and Control System December 1969

Performance Analysis
B Performance of Command and Service Module August 1970

Reaction Control System
Service Propulsion System Final Flight September 1970
Evaluation

5 Performance of Lunar Module Reaction August 1970
Control System

6 Ascent Propulsion System Final Flight January 1970
Evaluation

7 Descent Propulsion System Final Flight January 1970
Evaluation

8 Cancelled

9 Analysis of Apollo i0 Photography and August 1971
Visual Observations

l0 Entry Postflight Analysis December 1969
ll Comm_mications System Performance

Apollo ii

1 Trajectory Reconstruction and Analysis May 1970
2 Guidsmce, Navigation, and Control System September 1970

PerformanceAnalysis
3 Performance of Command and Service Module December 1971

Reaction Control System
4 Service Propulsion System Final Flight October 5970

Evaluation
5 Performance of Lunar Module Reaction December 1971

Control System
6 Ascent Propulsion System Final Flight September 5970

Evaluation

7 Descent Propulsion System Final Flight September 1970
Evaluation

8 Cancelled

9 Apollo ll Preliminary Science Report December 1969



TABLE E-I.- MISSION REPORT SUPPLEMENTS (Continued)

Supplement Title Publicati on
number date/status

l0 Communications System Performance January 1970

ll Entry Postflight Analysis April 1970

Apollo 12

1 Trajectory Reconstruction and Analysis September 1970

2 Guidance, Navigation, and Control System September 1970

Performance Analysis

3 Service Propulsion System Final Flight December 1971
Evaluat ion

4 Ascent Propulsion System Final Flight Publication
Evaluat ion

5 Descent Propulsion System Final Flight Publication
Evaluat ion

6 Apollo 12 Preliminary Science Report July 1970

7 Landing site Selection Processes Final Review

Apollo 13

i Guidance, Navigation, and Control System September 1970

Performance Analysis

2 Descent Propulsion System Final Flight October 1970
Evaluat ion

3 Entry Postflight Analysis Cancelled

Apollo 14

i Guidance, Navigation, and Control System January 1972

Performance Analysis _

2 Cryogenic Storage System Performance March 1972

Analysis

3 Service Propulsion System Final Flight May 1972 _
Evaluat ion

4 Ascent Propulsion System Final Flight May 1972
Evaluat ion

5 Descent Propulsion System Final Flight Publication
Evaluation

6 Apollo 14 Preliminary Science Report June 1971

7 Analysis of Inflight Demonstrations January 1972
8 Atmospheric Electricity Experiments on January 1972

Apollo 13 and 14 Launches
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TABLE E-!.- MISSION REPORT SUPPLEMENTS (Concluded)

Supplement Title Publication
number date/status

Apollo 15

1 Guidance, Navigation and Control System Preparationm

Performance Analysis

2 Service Propulsion System Final Flight Preparation
Evaluation

3 Ascent Propulsion System Final Flight Preparation
Evsluation

4 Descent Propulsion System Final Flight Preparation
Evaluation

5 Apollo 15 Preliminary Science Report April 1972

6 Postflight Analysis of the Extravehicular January 1972

Co_nunications System - Lunar Module
Communications Link

7 Analysis of Command Module Color Tele- Preparation
vision Camera

Apollo 16

1 Guid_uce, Navigation and Control System Preparation

Performance Analysis

2 Service Propulsion System Final Flight Preparation
Ew_luation

3 Ascent Propulsion System Final Flight Preparation
Ew_luation

4 Descent Propulsion System Final Flight Preparation
Evaluation

5 Apollo 16 Preliminary Science Report Preparation

6 Microbial Response and Space Environment Preparation

• E_periment (S-191)

7 Analysis of Fluid Electrophoresis Preparation
Demonstration

f
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APPENDIX F - GLOSSARY

Albedo Relative brightness, defined as the ratio of radiation
reflected from a surface to the total amount incident

upon it.

Afterglow The glow that persists after the source of excitation

_ is no longer present.

Anisotropic Having different optical or other physical properties

along axes in different directions.

Auroral belts Approximately circular bands around the earth's geo-

magnetic poles resulting from interaction of high-

energy electrons and protons of solar origin with the

upper atmospheric gases. The bands are located about
lO ° to 15 ° from the poles and broaden toward the

equator during periods of intense activity.

Bilirubin A red bile pigment that causes variations in the color
of the bile.

Breccia A rock consisting of sharp fragments embedded in a

fine-grained matrix.

Bungee Elasticized cord used as a fastener.

Cirrus Clouds formed in the highest cloud region and composed

of ice crystals. They are usually thin and wispy in

appearance.

Clast A discrete fragment of rock or mineral included in a

larger rock.

_, Double umbra When the umbra of a satellite is within the umbra of

a planetary body around which it is orbiting.

Earthshine Illumination of the moon's surface by sunlight re-

flected from the earth's surface and atmosphere.

Ecliptic The plane defined by the earth's orbit about the sun.

Endogenetic Having to do with rocks formed by solidification from
fusion, precipation from solution, or sublimation.

Ephemeris A table of the computed positions of celestial bodies
at regular intervals.

//
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APPENDIX F- GLOSSARY - Continued

Fecal Pertaining to body waste discharged through the anus °

Friable Easily crumbled, pulverized, or reduced to powder.

Geocorona The envelope of atomic hydrogen surrounding the earth.

Germicide An agent that destroys pathogenic micro-organisms.

Hummocky Descriptive of an area having many low, rounded hills
or knolls.

Limb The outer edge of the apparent disc of a celestial

body, or a portion of the edge.

Magnetic equator The line on the surface of the earth that connects all

points at which the magnetic inclination is zero.

Maria Large, dark, flat areas of the lunar surface.

Pathogenic Disease producing organisms.
microflora

Polarimetric Relating to the measurement of the amount of polariza-

tion of light in a partially polarized ray.

Radial sample Material taken from a crater's eJecta field at the

crater's rim, at a distance equal to the crater's

radius, and at a distance equal to the crater's diam-
eter.

Ray Bright material extending radially outward from a cra-

ter and composed of ejecta from the formation of the
crater.

Regolith The surface layer of unsorted fragmented material on
the earth or moon that overlies solid material.

Reseau plate A glass plate containing a grid of fine lines of a

standard size that is photographed with an object or
scene to aid in measurement.

Reticle A pattern of very fine lines in the focus of the eye-

piece of an optical instrument.

Seconal A proprietary medicine used to induce sleep.



APPENDIX F - GLOSSARY - Concluded

Selenodetic Relating to the branch of applied mathematics that

determines by observation and measurement the posi-

tions of points on the moon's surface and the size

aud shape of the moon.

Sinkhole A hollow or hole worn through a rock.

Solar corona The outer visible envelope of the sun.

Stereobase A type of photography in which photographs taken of
the same area from different angles are combined to

produce visible features in three-dimensional relief.

Stratigraphy That branch of geology that deals with the origin,
composition, distribution and succession of strata.

Substellar point A point at which a star is vertically overhead.

Terra Large areas of the lunar surface that are lighter in

color than the adjacent maria.

Umbra The conically-shaped shadow projecting from a planet

or satellite on the side opposite the sun.

Unipole The pole fastened to the side hatch of the command
module _and upon which devices such as cameras are
mounted during transearth extravehicular operations.

Vignetting Pertaining to the progressive reduction in the inten-
sity of illumination falling on a photographic film
toward the edges of the picture due to the obstruc-

tion of oblique light beams.

Zap pits Small glass-lined depressions in rocks caused by im-
pacts from particles travelling at extremely high

speeds o

Zero phase An orientation in which an area or object viewed is
coplanar with the sun and observer, resulting in poor
definition of features.

/
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APOLLO SPACECRAFT FLIGHT HISTORY

(Continued from inside front cover)

Mission report

Mission number S_ Descri ti_ Launch date LatLuch site

Apollo h MSC-PA-R-68-1 SC-017 gupercircular Nov. 9, 1967 Kennedy Space

LTA-10R entry at lunar Center_ Fla.
return velocity

Apollo 5 MSC-PA-R-68-7 LM-I First lunar Jan. 22, 1968 Cape Kennedy,

module flight Fla.

Apollo 6 MSC~PA-R-68-9 SC-020 Verification of April 4, 1968 Kennedy Space

_" LTA-SR closed-loop Center, Fla.

_ emergency detection
system

Apollo 7 MSC-PA-R-68-15 CSM 101 First manned flight; 0ct. ii, 1968 Cape Kennedy,

earth-orbital Fla.

Apollo $ M$C-PA-R-69-1 CSM 103 First manned itmar Dee. 21, 1968 Kennedy Space

orbital flight; first Center, Fla.

manned Saturn V launch

Apollo 9 MBC-PA-R-69-2 CSM i0_ First manned lunar March 3, 1969 Kennedy Space

LM-3 module flight; earth Center, Fla. "

orbit rendezvous; extra-

vehicular activity

Apollo l0 _C-OOI26 CSM 106 First l_nar orbit May 18, 1969 Kennedy Space

LM-4 rendezvous ; low pass Center • Fla.
over lunar surface

Apollo ii MSC-O0171 CSM 107 First lunar landing July 16, 1969 Kennedy Space

- LM-5 Center, Fla.

Apollo 12 M8C-01855 CSM 108 Second lunar landing Nov. 14, 1969 Kennedy Space
LM-6 Center, Fla.

Apollo 13 MSC-02680 CSM 109 Aborted during trs_Is- April ll_ 1970 Kennedy Space

LM- 7 lunar flight because Center, Fla.

of cryogenic oxygen loss

Apollo 14 MSC-O4112 CSM i10 Third luu_r landing Jan. 31, 1971 Kennedy Space

LM-8 Center, Fla.

Apollo 15 MSC-05161 CSM ll2 Fourth lunar landing July 26, 1971 Kennedy Space
LM-10 an& first extended _c£- Ce_ter_ Fla.

ence capability mission

Apollo 16 MSC-07230 CSM-113 Fifth lunar 18nding and April 16, 1972 Kenned_ Space
second extended science Center, Fla.

capability mission

f
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